精英家教网 > 高中数学 > 题目详情
函数f(x)=
ax+b
1+x2
是定义在(-1,1)的奇函数,且f(
1
2
)=
2
5

(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.
(1)∵函数f(x)=
ax+b
1+x2
是定义在(-1,1)的奇函数
∴f(0)=0,即得b=0
∵f(
1
2
)=
2
5

1
2
1+(
1
2
)
2
=
2
5
,即得a=1
∴f(x)=
x
1+x2

(2)设任意x1,x2∈(0,1),且x1<x2
则f(x1)-f(x2)=
x1
1+x12
-
x2
1+x22

=
x1(1+x22)-x2(1+x12)
(1+x12)(1+x22)

=
(x1-x2)(1-x1x2
(1+x12)(1+x22)
<0
即f(x1)<f(x2
∴函数f(x)在(0,1)上为增函数
∵函数f(x)是定义在(-1,1)的奇函数
∴函数f(x)在(-1,1)上为增函数
(3)不等式f(t-1)+f(t)<0
?f(t-1)<-f(t)
?f(t-1)<f(-t)  (根据奇函数的性质)
?
-1<t-1<1
-1<-t<1
t-1<-t
  (根据定义域和单调性)
?0<t<
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
bx
+c(a>0)的图象在点(1,f(1))处的切线方程为y=x-1.
(1)用a表示出b,c;
(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a≠0,函数f(x)=ax(x-2)2(x∈R)
(Ⅰ)若函数f(x)有极大值32,求实数a的值;
(Ⅱ)若对于x∈[-2,1],不等式f(x)<
329
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax(a>0且a≠1)在[-1,1]上的最大值与最小值之和为
10
3
,则a的值为
3或
1
3
3或
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+b,其中f(0)=-2,f(2)=0,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)(注:本题第(2)(3)两问只需要解答一问,两问都答只计第(2)问得分)
已知函数f(x)=ax+xln|x+b|是奇函数,且图象在点(e,f(e))处的切线斜率为3(e为自然对数的底数).
(1)求实数a、b的值;
(2)若k∈Z,且k<
f(x)x-1
对任意x>1恒成立,求k的最大值;
(3)当m>n>1(m,n∈Z)时,证明:(nmmn>(mnnm

查看答案和解析>>

同步练习册答案