精英家教网 > 高中数学 > 题目详情
6.不等式x2-x-2<0的解集为(-1,2).

分析 不等式x2-x-2<0化为(x-2)(x+1)<0,即可解出.

解答 解:不等式x2-x-2<0化为(x-2)(x+1)<0,解得-1<x<2.
∴不等式x2-x-2<0的解集为(-1,2).
故答案为:(-1,2).

点评 本题考查了一元二次不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{-x-1(x<-2)}\\{x+3(-2≤x≤\frac{1}{2})}\\{5x+1(x>\frac{1}{2})}\end{array}\right.$
(1)画出函数的图象并由图象观察函数f(x)的最小值;
(2)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$f(x)={(\frac{1}{3})^{\sqrt{1-{x^2}}}}$的单调增区间是[0,1],值域为$[{\frac{1}{3},1}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2px(p>0)的焦点F和椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点重合.
(1)求抛物线C的方程;
(2)若定长为5的线段AB两个端点在抛物线C上移动,线段AB的中点为M,求点M到y轴的最短距离,并求此时M点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an},{bn}的前n项和分别为Sn,Tn,且$\frac{S_n}{T_n}=\frac{9n+59}{n+3}$,则使得$\frac{a_n}{b_n}$为整数的正整数的个数是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法正确的是(  )
(1)残差平方和越小,相关指数R2越小,模型的拟合效果越差
(2)残差平方和越大,相关指数R2越大,模型的拟合效果越好
(3)残差平方和越小,相关指数R2越大,模型的拟合效果越好
(4)残差平方和越大,相关指数R2越小,模型的拟合效果越差.
A.(1)(2)B.(3)(4)C.(1)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义“等和数列”:在一个数列中,如果每一项与它后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=-1,公和为1,那么这个数列的前2011项和S2011=1004.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值 时,v3的值(  )
A.-10B.-80C.40D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.根据条件写出直线的方程
(1)经过点A(8,-2),斜率是$-\frac{1}{2}$.
(2)经过点P1(3,-2),P2(5,-4).

查看答案和解析>>

同步练习册答案