如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M为棱PB的中点.
(1)证明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
(1) (2)
解析试题分析:(1) 连接,取的中点,连接,
要证平面,只要证,即可,由题设可得是等腰的底边上的中线,所以;另一方面由又可得出
考虑到平面 平面,;问题得证.
(2)根据空间图形中已知的垂直关系,可以为坐标原点,射线为正半轴,建立如图所示的直角坐标系,写出点 ,分别求出平面 的一个法向量 和平面 的一个法向量,利用向的夹公式求二面角A—DM—C的余弦值
试题解析:
证明:连接,取的中点,连接,
由此知,即为直角三角形,故
又平面,故
所以,平面, 2分
又,为的中点
4分
5分
平面 6分
以为坐标原点,射线为正半轴,建立如图所示的直角坐标系, 7分
则从而
设是平面的一个法向量,则
科目:高中数学 来源: 题型:解答题
如图2,四边形为矩形,⊥平面,,作如图3折叠,折痕,其中点分别在线段上,沿折叠后点叠在线段上的点记为,并且⊥.(1)证明:⊥平面;
(2)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.
(1)证明:BD⊥AA1;
(2)求锐二面角D-A1A-C的平面角的余弦值;
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直角梯形ABCP中,,D是AP的中点,E,G分别为PC,CB的中点,将三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中点,求证:AP平面EFG;(2)当二面角G-EF-D的大小为时,求FG与平面PBC所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知在四棱锥中,底面是矩形,平面,,,是的中点,是线段上的点.
(1)当是的中点时,求证:平面;
(2)要使二面角的大小为,试确定点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知正四棱锥P-ABCD的所有棱长都是2,底面正方形两条对角线相交于O点,M是侧棱PC的中点.
(1)求此正四棱锥的体积.
(2)求直线BM与侧面PAB所成角θ的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com