精英家教网 > 高中数学 > 题目详情

如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M为棱PB的中点.

(1)证明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.

(1) (2)

解析试题分析:(1) 连接,取的中点,连接
要证平面,只要证即可,由题设可得是等腰的底边上的中线,所以;另一方面由又可得出 
考虑到平面  平面;问题得证.
(2)根据空间图形中已知的垂直关系,可以为坐标原点,射线正半轴,建立如图所示的直角坐标系,写出点 ,分别求出平面 的一个法向量 和平面 的一个法向量,利用向的夹公式求二面角A—DM—C的余弦值
试题解析:
证明:连接,取的中点,连接

由此知,即为直角三角形,故
平面,故
所以,平面                        2分
的中点
                                    4分
                                  5分
平面                                  6分

为坐标原点,射线正半轴,建立如图所示的直角坐标系,        7分
从而
是平面的一个法向量,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图2,四边形为矩形,⊥平面,作如图3折叠,折痕,其中点分别在线段上,沿折叠后点叠在线段上的点记为,并且.(1)证明:⊥平面;
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.

(1)证明:BD⊥AA1
(2)求锐二面角D-A1A-C的平面角的余弦值;
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是平行四边形,,
.若中点,为线段上的点,且
(1)求证:平面
(2)求PC与平面PAD所成角的正弦值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如下图,在三棱锥中,底面,点为以为直径的圆上任意一动点,且,点的中点,且交于点.
(1)求证:
(2)当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥的底面的菱形,,点边的中点,交于点

(1)求证:
(2)若的大小;
(3)在(2)的条件下,求异面直线所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形ABCP中,,D是AP的中点,E,G分别为PC,CB的中点,将三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中点,求证:AP平面EFG;(2)当二面角G-EF-D的大小为时,求FG与平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在四棱锥中,底面是矩形,平面的中点,是线段上的点.

(1)当的中点时,求证:平面
(2)要使二面角的大小为,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正四棱锥P-ABCD的所有棱长都是2,底面正方形两条对角线相交于O点,M是侧棱PC的中点.

(1)求此正四棱锥的体积.
(2)求直线BM与侧面PAB所成角θ的正弦值.

查看答案和解析>>

同步练习册答案