精英家教网 > 高中数学 > 题目详情

如图,在直角梯形ABCP中,,D是AP的中点,E,G分别为PC,CB的中点,将三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中点,求证:AP平面EFG;(2)当二面角G-EF-D的大小为时,求FG与平面PBC所成角的余弦值.

(1)详见解析,(2)

解析试题分析:(1)证明线面平行,关键找线线平行.因为本题条件涉及中点较多,宜从中位线性质出发寻找.如取AD中点M,则有所以平面=平面.本题也可从证面面平行出发,推出线面平行.(2)已知二面角平面角,求线面角,宜利用空间向量解决.先建立空间直角坐标系,设出各点的坐标,,,,,设,利用二面角G-EF-D的大小为求出,再利用空间向量数量积求线面角. 利用空间向量求角,关键是正确表示平面的法向量,明确向量夹角与二面角或线面角之间关系.
试题解析:(1)证明:的中点时,////,//,//平面,
//平面,,平面//平面,平面,
//平面.                       (6分)
(2)建立如图所示的坐标系,则有,,,,设,

,,平面的法向量,则有
,解得. .
平面的法向量,依题意,
,
.于是.
平面的法向量,,
,则有
,解得. .
与平面所成角为,则有,
故有.                        (12分)
考点:线面平行判定定理,利用空间向量求角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如下图所示,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.

(1)求证:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(1)证明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M为棱PB的中点.

(1)证明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,侧棱底面,过垂直点,作垂直点,平面点,且.

(1)设点上任一点,试求的最小值;
(2)求证:在以为直径的圆上;
(3)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为平行四边形,⊥底面
 
(1)证明:平面平面
(2)若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(1)求证:
(2)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,△ABC是边长为6的等边三角形,E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点.线段AG交线段ED于F点,将△AED沿ED翻折,使平面AED⊥平面BCDE,连接AB、AC、AG形成如图乙所示的几何体。

(1)求证BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.

查看答案和解析>>

同步练习册答案