如图,四棱锥
的底面是正方形,侧棱
底面
,过
作
垂直
交
于
点,作
垂直
交
于
点,平面
交
于
点,且
,
.![]()
(1)设点
是
上任一点,试求
的最小值;
(2)求证:
、
在以
为直径的圆上;
(3)求平面
与平面
所成的锐二面角的余弦值.
(1)
;(2)详见解析;(3)
.
解析试题分析:(1)将侧面
和侧面
沿着
展开至同一平面上,利用
、
、
三点共线结合余弦定理求出
的最小值,即线段
的长度;(2)证
平面
,从而得到
,同理得到
,进而证明
、
在以
为直径的圆上;(3)方法一是建立以点
为坐标原点,分别以
、
、
所在的直线为
、
、
轴的空间直角坐标系,利用空间向量法求平面
与平面
所成的锐二面角的余弦值;方法二是延长
与
使得它们相交,找出二面角的棱,然后利用三垂线法找出平面
与平面
所成的锐二面角的平面角,利用直角三角函数来求相应角的余弦值.
试题解析:(1)将侧面
绕侧棱
旋转到与侧面
在同一平面内,如下图示,![]()
则当
、
、
三点共线时,
取最小值,这时,
的最小值即线段
的长,
设
,则
,
在
中,
,
,
在三角形
中,有余弦定理得:
,
,
(2)
底面
,
,又![]()
平面
,又
平面
,
,
又
,
平面
,
又
平面
,
,
同理
,
、
在以
为直径的圆上;
(3)方法一:如图,以
为原点,分别以
、
、
所在的直线为![]()
科目:高中数学 来源: 题型:解答题
如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC
及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.
(1)求证:AC⊥DE;![]()
(2)求二面角A-DE-C的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=
BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4![]()
(1)求异面直线GE与PC所成角的余弦值;
(2)若F点是棱PC上一点,且
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直角梯形ABCP中,
,D是AP的中点,E,G分别为PC,CB的中点,将三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中点,求证:AP
平面EFG;(2)当二面角G-EF-D的大小为
时,求FG与平面PBC所成角的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,
于
,延长AE交BC于F,将
ABD沿BD折起,使平面ABD
平面BCD,如图2所示.![]()
(1)求证:AE⊥平面BCD;
(2)求二面角A–DC–B的余弦值.
(3)在线段
上是否存在点
使得
平面
?若存在,请指明点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥P-ABCD中,侧面PCD
底面ABCD,PD
CD,底面ABCD是直角梯形,AB∥DC,
,
,
.![]()
(1)求证:BC
平面PBD:
(2)求直线AP与平面PDB所成角的正弦值;
(3)设E为侧棱PC上异于端点的一点,
,试确定
的值,使得二面角E-BD-P的余弦值为
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com