如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC
及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.
(1)求证:AC⊥DE;
(2)求二面角A-DE-C的余弦值。
科目:高中数学 来源: 题型:解答题
在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥面ABC,AA1=a,A1C=CA=AB=a,AB⊥AC,D为AA1中点.
(1)求证:CD⊥面ABB1A1;
(2)在侧棱BB1上确定一点E,使得二面角E-A1C1-A的大小为.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(1)证明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示的几何体中,面为正方形,面为等腰梯形,,,,且平面平面.
(1)求与平面所成角的正弦值;
(2)线段上是否存在点,使平面平面?
证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥的底面是正方形,侧棱底面,过作垂直交于点,作垂直交于点,平面交于点,且,.
(1)设点是上任一点,试求的最小值;
(2)求证:、在以为直径的圆上;
(3)求平面与平面所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.
求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com