精英家教网 > 高中数学 > 题目详情

在四棱锥P-ABCD中,侧面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,

(1)求证:BC平面PBD:
(2)求直线AP与平面PDB所成角的正弦值;
(3)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角E-BD-P的余弦值为

(1)参考解析;(2);(3)

解析试题分析:(1)由PDCD,底面ABCD是直角梯形,如图建立空间直角坐标系,,写出点D,B,C,P,的坐标,分别写出相应的向量,即可得向量BD与向量CB的数量积为零,向量PD与向量BC的数量积为零.由向量关系转化为空间线面中位置关系,即可得到结论.
(2)要求直线AP与平面PDB所成角的正弦值,等价于求出平面PBD的法向量与向量AP所成的角余弦值即可.
(3)要使得二面角E-BD-P的余弦值为,关键是求出平面EBD的法向量,由于平面PBD的法向量已知,再通过两法向量的夹角的绝对值等于.即可解出的值.
试题解析:(1)证明:因为侧面⊥底面

所以⊥底面,所以.
又因为,即
为原点建立如图所示的空间直角坐标系,

所以
所以,所以.
⊥底面,可得,
又因为,所以⊥平面.
(2)由(1)知平面的一个法向量为
所以
设直线AP与平面PDB所成角为,则
(3)因为,又,设

所以.设平面的法向量为
因为,由
,令,则可得平面的一个法向量为所以
解得,又由题意知,故.
考点:1.空间坐标系的建立.2.线面垂直的证明.3.线面所成的角.4.面面所成的角.5.待定系数的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥面ABC,AA1=a,A1C=CA=AB=a,AB⊥AC,D为AA1中点.
(1)求证:CD⊥面ABB1A1
(2)在侧棱BB1上确定一点E,使得二面角E-A1C1-A的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,侧棱底面,过垂直点,作垂直点,平面点,且.

(1)设点上任一点,试求的最小值;
(2)求证:在以为直径的圆上;
(3)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(1)求证:
(2)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥,底面是等腰梯形,
中点,平面
中点.

(1)证明:平面平面
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.

(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;
(2)求二面角F­CD­A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三棱柱ABC-A1B1C1在如图所示的空间直角坐标系中,已知AB=2,AC=4,A1A=3.D是BC的中点.

(1)求直线DB1与平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.

查看答案和解析>>

同步练习册答案