精英家教网 > 高中数学 > 题目详情

已知a∈R,函数f(x)=x2|x-a|.
(1)当a=2时,求使f(x)=x成立的x的集合;
(2)求函数y=f(x)在区间[1,2]上的最小值.

解:(Ⅰ)由题意,f(x)=x2|x-2|
当x<2时,由f(x)=x2(2-x)=x,解得x=0或x=1;
当x≥2时,由f(x)=x2(x-2)=x,解得x=1+
综上,所求解集为{0,1,1+}
(Ⅱ)设此最小值为m.
①当a≤1时,在区间[1,2]上,f(x)=x3-ax2
∵f′(x)=3x2-2ax=3x(x-a)>0,x∈(1,2),
则f(x)是区间[1,2]上的增函数,∴m=f(1)=1-a.
②当1<a≤2时,在区间[1,2]上,f(x)=x2|x-a|≥0,由f(a)=0知m=f(a)=0.
③当a>2时,在区间[1,2]上,f(x)=ax2-x3
f′(x)=2ax-3x2=3x(a-x).
若a≥3,在区间(1,2)上,f'(x)>0,则f(x)是区间[1,2]上的增函数,
∴m=f(1)=a-1.
若2<a<3,则1<a<2.
当1<x<a时,f'(x)>0,则f(x)是区间[1,a]上的增函数,
a<x<2时,f'(x)<0,则f(x)是区间[a,2]上的减函数,
因此当2<a<3时,故m=f(1)=a-1或m=f(2)=4(a-2).
当2<a≤时,4(a-2)≤a-1,故m=f(2)=4(a-2),
<a<3时,4(a-2)<a-1,故m=f(1)=a-1.
总上所述,所求函数的最小值m=
分析:(Ⅰ)把a=2代入函数解析式,根据绝对值的符号分为两种情况,即x<2和x≥2分别求解对应方程得根,再把所有的根用列举法表示出来.
(Ⅱ)根据区间[1,2]和绝对值内的式子进行分类讨论,即a≤1、1<a≤2和a≥3三种情况,分别求出解析式和它的导函数,利用导函数的符号判断在闭区间上的单调性,再求最小值;当a≥3时最小值可能取在区间的两端,再通过作差和分类进行比较两个函数值的大小,最后用分段函数表示函数的最小值.
点评:本题主要用了分类讨论的思想解决含有参数的函数求值和求最值问题,分类的标准是绝对值的符号,求闭区间上的最值时,通常是求函数的导数用它的符号判断函数在区间上的单调性,再求最值,有时需要对端点处的函数值进行作差比较大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函数g(x)=f′(x)是偶函数,求f(x)的极大值和极小值;
(Ⅱ)如果函数f(x)是(-∞,?+∞)上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=ln(x+1)-x2+ax+2.
(1)若函数f(x)在[1,+∞)上为减函数,求实数a的取值范围;
(2)令a=-1,b∈R,已知函数g(x)=b+2bx-x2.若对任意x1∈(-1,+∞),总存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e为自然对数的底).
(1)当a>0时,求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在求出x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知a∈R,函数 f(x)=x3+ax2+(a-3)x的导函数是偶函数,则曲线y=f(x)在原点处的切线方程为
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.

查看答案和解析>>

同步练习册答案