【题目】已知等差数列中, , .
(1)求的通项公式;
(2)设,求数列的前项和.
【答案】(1);(2).
【解析】试题分析:(1)根据等差数列中, , 列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由(1)可得 ,利用裂项相消法求解即可.
试题解析:(1)由,得,解得.
所以,数列的通项公式为.
(2) ,
所以的前项和 .
所以.
【方法点晴】本题主要考查等差数列的通项公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1) ;(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
科目:高中数学 来源: 题型:
【题目】某地区年至年农村居民家庭人均纯收入(单位:千元)的数据如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析年至年该地区农村居民家庭人纯收入的变化情况,并预测该地区年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
.
参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下结论正确的序号有_________
(1)根据列联表中的数据计算得出≥6.635, 而P(≥6.635)≈0.01,则有99% 的把握认为两个分类变量有关系.
(2)在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关.
(3)在线性回归分析中,相关系数为,越接近于1,相关程度越大;越小,相关程度越小.
(4)在回归直线中,变量时,变量的值一定是15.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A万元,则超出部分按2log5(A+1)进行奖励.记奖金y(单位:万元),销售利润x(单位:万元)
(1)写出该公司激励销售人员的奖励方案的函数模型;
(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设P1 , P2 , …Pn为平面α内的n个点,在平面α内的所有点中,若点P到点P1 , P2 , …Pn的距离之和最小,则称点P为P1 , P2 , …Pn的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:
①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;
②直角三角形斜边的中点是该直角三角形三个顶点的中位点;
③若四个点A、B、C、D共线,则它们的中位点存在且唯一;
④梯形对角线的交点是该梯形四个顶点的唯一中位点.
其中的真命题是(写出所有真命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义为n个正数的“均倒数”.已知正项数列{an}的前n项的“均倒数”为.
(1)求数列{an}的通项公式.
(2)设数列的前n项和为,若4<对一切恒成立试求实数m的取值范围.
(3)令,问:是否存在正整数k使得对一切恒成立,如存在求出k值,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集为R,函数 的定义域为M,则RM为( )
A.[﹣1,1]
B.(﹣1,1)
C.(﹣∞,﹣1]∪[1,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com