·ÖÎö £¨1£©Í¨¹ýACBDΪÕý·½ÐοÉÖªÖ±Ïßl1ºÍl2µÄ·½³ÌΪy=xºÍy=-x£¬½ø¶øÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬ÀûÓöԳÆÐÔ¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ý·ÁÉèÖ±Ïßl1µÄ·½³ÌΪy=kx£¬ÔòÖ±Ïßl2µÄ·½³ÌΪy=-kx£¬ÉèP£¨x0£¬y0£©£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼°$\frac{{{x}_{0}}^{2}}{{a}^{2}}$+$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1£¬ÕûÀí¿ÉÖª${{d}_{1}}^{2}$+${{d}_{2}}^{2}$µÄ±í´ïʽ£¬½ø¶øÀûÓÃd12+d22Ϊ¶¨Öµ¼ÆËã¼´µÃ½áÂÛ£»
£¨3£©Í¨¹ýÉèACÓëÔ²x2+y2=1ÏàÇеÄÇеã×ø±êΪ£¨x0£¬y0£©£¬ÁªÁ¢ÇÐÏßACµÄ·½³ÌÓëÍÖÔ²·½³Ì£¬·Öx0=0»òy0=0¡¢x0¡Ù0»òy0¡Ù0Á½ÖÖÇé¿öÌÖÂÛ¼´¿É£®
½â´ð ½â£º£¨1£©¡ßACBDΪÕý·½ÐΣ¬
¡àÖ±Ïßl1ºÍl2µÄ·½³ÌΪy=xºÍy=-x£¬
ÉèµãA¡¢BµÄ×ø±êΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=x}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬µÃ${{x}_{1}}^{2}$=${{x}_{2}}^{2}$=$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$£¬
ÓɶԳÆÐÔ¿ÉÖª£¬S=4${{x}_{1}}^{2}$=$\frac{4{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$£»
£¨2£©ÓÉÌâÒ⣬²»·ÁÉèÖ±Ïßl1µÄ·½³ÌΪy=kx£¬ÔòÖ±Ïßl2µÄ·½³ÌΪy=-kx£¬
ÉèP£¨x0£¬y0£©£¬Ôò$\frac{{{x}_{0}}^{2}}{{a}^{2}}$+$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1£¬
ÓÖ¡ßd1=$\frac{|k{x}_{0}-{y}_{0}|}{\sqrt{1+{k}^{2}}}$£¬d2=$\frac{|k{x}_{0}+{y}_{0}|}{\sqrt{1+{k}^{2}}}$£¬
¡à${{d}_{1}}^{2}$+${{d}_{2}}^{2}$=$\frac{£¨k{x}_{0}-{y}_{0}£©^{2}}{1+{k}^{2}}$+$\frac{£¨k{x}_{0}+{y}_{0}£©^{2}}{1+{k}^{2}}$=$\frac{2{k}^{2}{{x}_{0}}^{2}+2{{y}_{0}}^{2}}{1+{k}^{2}}$£¬
½«${{y}_{0}}^{2}$=b2£¨1-$\frac{{{x}_{0}}^{2}}{{a}^{2}}$£©´úÈëÉÏʽ£¬
µÃ${{d}_{1}}^{2}$+${{d}_{2}}^{2}$=$\frac{2£¨{k}^{2}-\frac{{b}^{2}}{{a}^{2}}£©{{x}_{0}}^{2}+2{b}^{2}}{1+{k}^{2}}$£¬
¡ßd12+d22Ϊ¶¨Öµ£¬
¡àk2-$\frac{{b}^{2}}{{a}^{2}}$=0£¬¼´k=¡À$\frac{b}{a}$£¬
ÓÚÊÇÖ±Ïßl1ºÍl2µÄбÂÊ·Ö±ðΪ$\frac{b}{a}$ºÍ-$\frac{b}{a}$£¬´Ëʱ${{d}_{1}}^{2}$+${{d}_{2}}^{2}$=$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$£»
£¨3£©ÉèACÓëÔ²x2+y2=1ÏàÇеÄÇеã×ø±êΪ£¨x0£¬y0£©£¬
ÔòÇÐÏßACµÄ·½³ÌΪ£ºx0x+y0y=1£¬
µãA¡¢CµÄ×ø±êΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©Îª·½³Ì×é$\left\{\begin{array}{l}{{x}_{0}x+{y}_{0}y=1}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$µÄʵÊý½â£®
¢Ùµ±x0=0»òy0=0ʱ£¬ACBD¾ùΪÕý·½ÐΣ¬
ÍÖÔ²¾ù¹ýµã£¨1£¬1£©£¬ÓÚÊÇÓÐ$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1£»
¢Úµ±x0¡Ù0»òy0¡Ù0ʱ£¬½«y=$\frac{1}{{y}_{0}}$£¨1-x0x£©´úÈë$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬
ÕûÀíµÃ£º£¨a2${{x}_{0}}^{2}$+b2${{y}_{0}}^{2}$£©x2-2a2x0x-a2£¨1+b2${{y}_{0}}^{2}$£©=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖªx1x2=$\frac{{a}^{2}£¨1-{b}^{2}{{y}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$£¬
ͬÀí¿ÉÖªy1y2=$\frac{{b}^{2}£¨1-{a}^{2}{{x}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$£¬
¡ßACBDΪÁâÐΣ¬
¡àAO¡ÍCO£¬¼´x1x2+y1y2=0£¬
¡à$\frac{{a}^{2}£¨1-{b}^{2}{{y}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$+$\frac{{b}^{2}£¨1-{a}^{2}{{x}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$=0£¬
ÕûÀíµÃ£ºa2+b2=a2b2£¨${{x}_{0}}^{2}$+${{y}_{0}}^{2}$£©£¬
ÓÖ¡ß${{x}_{0}}^{2}$+${{y}_{0}}^{2}$=1£¬
¡àa2+b2=a2b2£¬¼´$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1£»
×ÛÉÏËùÊö£¬a£¬bÂú×ãµÄ¹ØÏµÊ½Îª$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²é·ÖÀàÌÖÂÛµÄ˼Ï룬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ì¹ãÎ÷ÄÏÄþ¶þÖеÈУ¸ßÈý8ÔÂÁª¿¼Êýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ
ijͬѧº®¼ÙÆÚ¼ä¶ÔÆä30λÇ×ÊôµÄÒûʳϰ¹ß½øÐÐÁËÒ»´Îµ÷²é£¬ÁгöÁËÈçÏÂ
ÁÐÁª±í£º
Æ«°®Êß²Ë | Æ«°®ÈâÀà | ºÏ¼Æ | |
50ËêÒÔÏÂ | 4 | 8 | 12 |
50ËêÒÔÉÏ | 16 | 2 | 18 |
ºÏ¼Æ | 20 | 10 | 30 |
Ôò¿ÉÒÔ˵ÆäÇ×ÊôµÄÒûʳϰ¹ßÓëÄêÁäÓйصİÑÎÕΪ£¨ £©
A£®90% B£®95% C£®99% D£®99.9%
¸½£º²Î¿¼¹«Ê½ºÍÁÙ½çÖµ±í
![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêн®¿â¶ûÀÕÊи߶þÉÏѧÆÚ·Ö°à¿¼ÊÔÊýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ
ÒÑÖª½Ç
ÖÕ±ßÓ뵥λԲ
µÄ½»µãΪ
£¬Ôò
£¨ £©
A£®
B£®
C£®
D£®![]()
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêºÓ±±Ê¡¸ß¶þ8ÔÂÔ¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ
¶ÔÓÚÈÎÒâʵÊý
£¬Ö±Ïß
ÓëÔ²
µÄλÖùØÏµÊÇ________
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêºÓ±±Ê¡¸ß¶þ8ÔÂÔ¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ
ÔÚÀⳤΪ1µÄÕý·½ÌåÉÏ£¬·Ö±ðÓùý¹«¹²¶¥µãµÄÈýÌõÀâÖеãµÄÆ½Ãæ½Ø¸ÃÕý·½Ì壬Ôò½ØÈ¥8¸öÈýÀâ×¶ºó£¬Ê£Ïµļ¸ºÎÌåµÄÌå»ýÊÇ£¨ £©
A.
B.
C.
D.
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [-2£¬2] | B£® | £¨-¡Þ£¬-2]¡È[2£¬+¡Þ£© | C£® | [-$\frac{1}{2}$£¬$\frac{1}{2}$] | D£® | £¨-¡Þ£¬-$\frac{1}{2}$]¡È[$\frac{1}{2}$£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com