1£®ÒÑÖªÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬¹ýÔ­µãµÄÁ½ÌõÖ±Ïßl1ºÍl2·Ö±ðÓ릣½»ÓÚµãA¡¢BºÍC¡¢D£¬µÃµ½Æ½ÐÐËıßÐÎACBD£®
£¨1£©µ±ACBDΪÕý·½ÐÎʱ£¬Çó¸ÃÕý·½ÐεÄÃæ»ýS£»
£¨2£©ÈôÖ±Ïßl1ºÍl2¹ØÓÚyÖá¶Ô³Æ£¬¦£ÉÏÈÎÒâÒ»µãPµ½l1ºÍl2µÄ¾àÀë·Ö±ðΪd1ºÍd2£¬µ±d12+d22Ϊ¶¨ÖµÊ±£¬Çó´ËʱֱÏßl1ºÍl2µÄбÂʼ°¸Ã¶¨Öµ£®
£¨3£©µ±ACBDΪÁâÐΣ¬ÇÒÔ²x2+y2=1ÄÚÇÐÓÚÁâÐÎACBDʱ£¬Çóa£¬bÂú×ãµÄ¹ØÏµÊ½£®

·ÖÎö £¨1£©Í¨¹ýACBDΪÕý·½ÐοÉÖªÖ±Ïßl1ºÍl2µÄ·½³ÌΪy=xºÍy=-x£¬½ø¶øÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬ÀûÓöԳÆÐÔ¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ý·ÁÉèÖ±Ïßl1µÄ·½³ÌΪy=kx£¬ÔòÖ±Ïßl2µÄ·½³ÌΪy=-kx£¬ÉèP£¨x0£¬y0£©£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼°$\frac{{{x}_{0}}^{2}}{{a}^{2}}$+$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1£¬ÕûÀí¿ÉÖª${{d}_{1}}^{2}$+${{d}_{2}}^{2}$µÄ±í´ïʽ£¬½ø¶øÀûÓÃd12+d22Ϊ¶¨Öµ¼ÆËã¼´µÃ½áÂÛ£»
£¨3£©Í¨¹ýÉèACÓëÔ²x2+y2=1ÏàÇеÄÇеã×ø±êΪ£¨x0£¬y0£©£¬ÁªÁ¢ÇÐÏßACµÄ·½³ÌÓëÍÖÔ²·½³Ì£¬·Öx0=0»òy0=0¡¢x0¡Ù0»òy0¡Ù0Á½ÖÖÇé¿öÌÖÂÛ¼´¿É£®

½â´ð ½â£º£¨1£©¡ßACBDΪÕý·½ÐΣ¬
¡àÖ±Ïßl1ºÍl2µÄ·½³ÌΪy=xºÍy=-x£¬
ÉèµãA¡¢BµÄ×ø±êΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=x}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬µÃ${{x}_{1}}^{2}$=${{x}_{2}}^{2}$=$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$£¬
ÓɶԳÆÐÔ¿ÉÖª£¬S=4${{x}_{1}}^{2}$=$\frac{4{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$£»
£¨2£©ÓÉÌâÒ⣬²»·ÁÉèÖ±Ïßl1µÄ·½³ÌΪy=kx£¬ÔòÖ±Ïßl2µÄ·½³ÌΪy=-kx£¬
ÉèP£¨x0£¬y0£©£¬Ôò$\frac{{{x}_{0}}^{2}}{{a}^{2}}$+$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1£¬
ÓÖ¡ßd1=$\frac{|k{x}_{0}-{y}_{0}|}{\sqrt{1+{k}^{2}}}$£¬d2=$\frac{|k{x}_{0}+{y}_{0}|}{\sqrt{1+{k}^{2}}}$£¬
¡à${{d}_{1}}^{2}$+${{d}_{2}}^{2}$=$\frac{£¨k{x}_{0}-{y}_{0}£©^{2}}{1+{k}^{2}}$+$\frac{£¨k{x}_{0}+{y}_{0}£©^{2}}{1+{k}^{2}}$=$\frac{2{k}^{2}{{x}_{0}}^{2}+2{{y}_{0}}^{2}}{1+{k}^{2}}$£¬
½«${{y}_{0}}^{2}$=b2£¨1-$\frac{{{x}_{0}}^{2}}{{a}^{2}}$£©´úÈëÉÏʽ£¬
µÃ${{d}_{1}}^{2}$+${{d}_{2}}^{2}$=$\frac{2£¨{k}^{2}-\frac{{b}^{2}}{{a}^{2}}£©{{x}_{0}}^{2}+2{b}^{2}}{1+{k}^{2}}$£¬
¡ßd12+d22Ϊ¶¨Öµ£¬
¡àk2-$\frac{{b}^{2}}{{a}^{2}}$=0£¬¼´k=¡À$\frac{b}{a}$£¬
ÓÚÊÇÖ±Ïßl1ºÍl2µÄбÂÊ·Ö±ðΪ$\frac{b}{a}$ºÍ-$\frac{b}{a}$£¬´Ëʱ${{d}_{1}}^{2}$+${{d}_{2}}^{2}$=$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$£»
£¨3£©ÉèACÓëÔ²x2+y2=1ÏàÇеÄÇеã×ø±êΪ£¨x0£¬y0£©£¬
ÔòÇÐÏßACµÄ·½³ÌΪ£ºx0x+y0y=1£¬
µãA¡¢CµÄ×ø±êΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©Îª·½³Ì×é$\left\{\begin{array}{l}{{x}_{0}x+{y}_{0}y=1}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$µÄʵÊý½â£®
¢Ùµ±x0=0»òy0=0ʱ£¬ACBD¾ùΪÕý·½ÐΣ¬
ÍÖÔ²¾ù¹ýµã£¨1£¬1£©£¬ÓÚÊÇÓÐ$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1£»
¢Úµ±x0¡Ù0»òy0¡Ù0ʱ£¬½«y=$\frac{1}{{y}_{0}}$£¨1-x0x£©´úÈë$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬
ÕûÀíµÃ£º£¨a2${{x}_{0}}^{2}$+b2${{y}_{0}}^{2}$£©x2-2a2x0x-a2£¨1+b2${{y}_{0}}^{2}$£©=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖªx1x2=$\frac{{a}^{2}£¨1-{b}^{2}{{y}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$£¬
ͬÀí¿ÉÖªy1y2=$\frac{{b}^{2}£¨1-{a}^{2}{{x}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$£¬
¡ßACBDΪÁâÐΣ¬
¡àAO¡ÍCO£¬¼´x1x2+y1y2=0£¬
¡à$\frac{{a}^{2}£¨1-{b}^{2}{{y}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$+$\frac{{b}^{2}£¨1-{a}^{2}{{x}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$=0£¬
ÕûÀíµÃ£ºa2+b2=a2b2£¨${{x}_{0}}^{2}$+${{y}_{0}}^{2}$£©£¬
ÓÖ¡ß${{x}_{0}}^{2}$+${{y}_{0}}^{2}$=1£¬
¡àa2+b2=a2b2£¬¼´$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1£»
×ÛÉÏËùÊö£¬a£¬bÂú×ãµÄ¹ØÏµÊ½Îª$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1£®

µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²é·ÖÀàÌÖÂÛµÄ˼Ï룬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ì¹ãÎ÷ÄÏÄþ¶þÖеÈУ¸ßÈý8ÔÂÁª¿¼Êýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ijͬѧº®¼ÙÆÚ¼ä¶ÔÆä30λÇ×ÊôµÄÒûʳϰ¹ß½øÐÐÁËÒ»´Îµ÷²é£¬ÁгöÁËÈçÏÂÁÐÁª±í£º

Æ«°®Êß²Ë

Æ«°®ÈâÀà

ºÏ¼Æ

50ËêÒÔÏÂ

4

8

12

50ËêÒÔÉÏ

16

2

18

ºÏ¼Æ

20

10

30

Ôò¿ÉÒÔ˵ÆäÇ×ÊôµÄÒûʳϰ¹ßÓëÄêÁäÓйصİÑÎÕΪ£¨ £©

A£®90% B£®95% C£®99% D£®99.9%

¸½£º²Î¿¼¹«Ê½ºÍÁÙ½çÖµ±í

0.050

0.010

0.001

3.841

6.635

10.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêн®¿â¶ûÀÕÊи߶þÉÏѧÆÚ·Ö°à¿¼ÊÔÊýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÒÑÖª½ÇÖÕ±ßÓ뵥λԲµÄ½»µãΪ£¬Ôò£¨ £©

A£® B£® C£® D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêºÓ±±Ê¡¸ß¶þ8ÔÂÔ¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

¶ÔÓÚÈÎÒâʵÊý£¬Ö±ÏßÓëÔ²µÄλÖùØÏµÊÇ________

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêºÓ±±Ê¡¸ß¶þ8ÔÂÔ¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÔÚÀⳤΪ1µÄÕý·½ÌåÉÏ£¬·Ö±ðÓùý¹«¹²¶¥µãµÄÈýÌõÀâÖеãµÄÆ½Ãæ½Ø¸ÃÕý·½Ì壬Ôò½ØÈ¥8¸öÈýÀâ×¶ºó£¬Ê£Ïµļ¸ºÎÌåµÄÌå»ýÊÇ£¨ £©

A. B. C. D.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ö±Ïßy=k£¨x+1£©£¨k¡ÊR£©Óë²»µÈʽ×é$\left\{\begin{array}{l}2x+y-2¡Ü0\\ 2x-y-2¡Ü0\\ x¡Ý0\end{array}\right.$?£¬±íʾµÄÆ½ÃæÇøÓòÓй«¹²µã£¬ÔòkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-2£¬2]B£®£¨-¡Þ£¬-2]¡È[2£¬+¡Þ£©C£®[-$\frac{1}{2}$£¬$\frac{1}{2}$]D£®£¨-¡Þ£¬-$\frac{1}{2}$]¡È[$\frac{1}{2}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¹ýµã£¨2£¬1£©ÇÒÓëÖ±Ïßy=x+1´¹Ö±µÄÖ±Ïß·½³ÌÊÇx+y-3=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÊýÁÐ{an}Âú×ãan=$\frac{{a}^{n+1}-{a}^{-n-1}}{a-{a}^{-1}}$£¨n¡ÊN*£©£¬a¡Ù-1£¬0£¬1£¬Éèb=a+$\frac{1}{a}$£®
£¨1£©ÇóÖ¤£ºan+1=ban-an-1£¨n¡Ý2£¬n¡ÊN*£©£»
£¨2£©µ±n£¨n¡ÊN*£©ÎªÆæÊýʱ£¬an=$\sum_{i=0}^{\frac{n-1}{2}}£¨-1£©^{i}$C${\;}_{n-1}^{i}$bn-2i£¬²ÂÏëµ±n£¨n¡ÊN*£©ÎªÅ¼Êýʱ£¬an¹ØÓÚbµÄ±í´ïʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªº¯Êýy=f£¨x£©+x3Ϊżº¯Êý£¬ÇÒf£¨10£©=10£¬Èôº¯Êýg£¨x£©=f£¨x£©+6£¬Ôòg£¨-10£©=2016£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸