精英家教网 > 高中数学 > 题目详情

已知角终边与单位圆的交点为,则( )

A. B. C. D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C的对边分别为a,b,c,若2b=a+c,且A-C=90°,则cosB=(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{3}{4}$C.-$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源:2016-2017学年重庆市高二上学期入学考试数学试卷(解析版) 题型:解答题

已知分别为三个内角所对的边长,且

(Ⅰ)求角的值;

(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年重庆市高二上学期入学考试数学试卷(解析版) 题型:选择题

某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为 ( )

A.10 B.9 C. 8 D. 7

查看答案和解析>>

科目:高中数学 来源:2016-2017学年新疆库尔勒市高二上学期分班考试数学(理)试卷(解析版) 题型:填空题

中,,点M是 AB上的动点(包含端点),则的取值范围为

查看答案和解析>>

科目:高中数学 来源:2016-2017学年新疆库尔勒市高二上学期分班考试数学(理)试卷(解析版) 题型:选择题

函数的定义域是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北省高二8月月考数学试卷(解析版) 题型:解答题

已知圆轴相切,圆心在直线上,且被直线截得的弦长为,求圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过原点的两条直线l1和l2分别与Γ交于点A、B和C、D,得到平行四边形ACBD.
(1)当ACBD为正方形时,求该正方形的面积S;
(2)若直线l1和l2关于y轴对称,Γ上任意一点P到l1和l2的距离分别为d1和d2,当d12+d22为定值时,求此时直线l1和l2的斜率及该定值.
(3)当ACBD为菱形,且圆x2+y2=1内切于菱形ACBD时,求a,b满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.有一名同学家开了一个小卖部,他为了研究气温对某种引领销售的影响,记录了2015年7月至12月每月15号下午14时的气温和当天卖出的饮料杯数,得到如下资料:
日期7月15日8月15日9月15日10月15日11月15日12月15日
摄氏温度x(℃)36353024188
饮料杯数y27292418155
该同学确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选中的2组数据进行检验.
(1)求选取2组数据恰好是相邻的两个月的概率;
(2)若选中的是8月与12月的两组数据,根据剩下的4组数据,求出y关于x的线性回归方程$\hat y=bx+\hat a$.
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线$\hat a=\overline y-\hat b\overline x$的斜率和截距的最小二乘估计分别为:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

同步练习册答案