| A. | $\frac{14}{3}$ | B. | $\frac{13}{3}$ | C. | 3 | D. | $\frac{8}{3}$ |
分析 由题意知X的可能取值为2,3,4,5,分别求出相应的概率,由此能求出EX.
解答 解:由题意知X的可能取值为2,3,4,5,
P(X=2)=$\frac{2}{6}×\frac{1}{5}$=$\frac{1}{15}$,
P(X=3)=${C}_{2}^{1}•\frac{2}{6}•\frac{4}{5}•\frac{1}{4}$=$\frac{2}{15}$,
P(X=4)=${C}_{3}^{1}•\frac{2}{6}•\frac{4}{5}•\frac{3}{4}$$•\frac{1}{3}$=$\frac{1}{5}$,
P(X=5)=1-$\frac{1}{15}-\frac{2}{15}-\frac{1}{5}$=$\frac{3}{5}$,
∴抽检次数X的分布列为:
| X | 2 | 3 | 4 | 5 |
| P | $\frac{1}{15}$ | $\frac{2}{15}$ | $\frac{1}{5}$ | $\frac{3}{5}$ |
点评 本题考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{24-7\sqrt{3}}}{50}$ | B. | $\frac{{24+7\sqrt{3}}}{50}$ | C. | $\frac{{24\sqrt{3}-7}}{50}$ | D. | $\frac{{24\sqrt{3}+7}}{50}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | q>$\frac{\sqrt{5}+1}{2}$ | B. | q<$\frac{\sqrt{5}-1}{2}$ | C. | $\frac{\sqrt{5}-1}{2}$<q<$\frac{\sqrt{5}+1}{2}$ | D. | q<$\frac{\sqrt{5}-1}{2}$或q>$\frac{\sqrt{5}+1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{4}$ | B. | $\frac{17}{4}$ | C. | $\frac{5}{2}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com