精英家教网 > 高中数学 > 题目详情
如图,在平行四边形中,,,将沿折起,使

(1)求证:平面; 
(2)求平面和平面夹角的余弦值.
(1)先证出,建系后利用空间向量证明
(2) 

试题分析:,
如图建系,则  3分 
, .   6分 
(2)设平面PCD的法向量为
     9分 
.设平面PAC的法向量为

所以平面和平面夹角的余弦值为.  12分 
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,矩形与矩形所在的平面互相垂直,将沿翻折,翻折后的点E恰与BC上的点P重合.设,则当__时,有最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知垂直平行四边形所在平面,若,则平行四边形一定是(填形状)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分6分)
如图,在边长为的菱形中,分别是的中点.

(1)求证: 面
(2)求证:平面⊥平面
(3)求与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为(     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧面是正三角形,且平面⊥底面

(1)求证:⊥平面
(2)求直线与底面所成角的余弦值;
(3)设,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,△是正三角形,都垂直于平面,且的中点.

(1)求证:∥平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,下面结论错误的是( )
A.BD//平面B.
C.D.异面直线AD与所成角为450

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,C是圆周上不同于A、B的点,PA垂直于⊙O所在的平面,AE⊥PB于E,AF⊥PC于F,因此,         ⊥平面PBC.(填图中的一条直线)

查看答案和解析>>

同步练习册答案