精英家教网 > 高中数学 > 题目详情
(本小题满分6分)
如图,在边长为的菱形中,分别是的中点.

(1)求证: 面
(2)求证:平面⊥平面
(3)求与平面所成的角的正切值.
,又           故 (2)   又 ,(3)

试题分析:(1)…………1分


  ……………2分
(2) 
  又
  
  ……………4分
(3)解:。由 (2)知
又EF∥PB, 故EF与平面PAC所成的角为∠BPO………5分
因为BC=a 则CO=,BO=
在Rt△POC中PO=,故 ∠BPO=
所以直线EF与平面PAC所成的角的正切值为……………6分
点评:立体几何是高考的高频考点之一,一般前一两问多以考查线线,线面,面面的平行与垂直关系为主,最后一问主要考查求体积问题或者夹角问题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若两直线相交,且∥平面,则的位置关系是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示两条直线,表示两个平面,则下列命题是真命题的是(    )
A.若,则
B.若
C.若,则
D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平行六面体ABCDA1B1C1D1中,∠A1AD=∠A1AB=∠BAD=60°,AA1ABAD=1,EA1D1的中点。

给出下列四个命题:①∠BCC1为异面直线CC1所成的角;②三棱锥A1ABD是正三棱锥;③CE⊥平面BB1D1D;④;⑤||=.其中正确的命题有_____________.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在组合体中,ABCD—A1B1C1D1是一个长方体,P—ABCD是一个四棱锥.AB=2,BC=3,点P平面CC1D1D,且PC=PD=

(1)证明:PD平面PBC;
(2)求PA与平面ABCD所成的角的正切值;
(3)若,当a为何值时,PC//平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA垂直于矩形ABCD所在的平面,,E、F分别是AB、PD的中点.

(Ⅰ)求证:平面PCE 平面PCD;
(Ⅱ)求三棱锥P-EFC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平行四边形中,,,将沿折起,使

(1)求证:平面; 
(2)求平面和平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,平面,的中点.

(1)求证:∥平面
(2)求二面角的余弦值;
(3)设的中点为,问:在矩形内是否存在点,使得平面.若存在,求出点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)用斜二测画法画底面半径为2 cm,高为3 cm的圆锥的直观图.

查看答案和解析>>

同步练习册答案