精英家教网 > 高中数学 > 题目详情
已知平行六面体ABCDA1B1C1D1中,∠A1AD=∠A1AB=∠BAD=60°,AA1ABAD=1,EA1D1的中点。

给出下列四个命题:①∠BCC1为异面直线CC1所成的角;②三棱锥A1ABD是正三棱锥;③CE⊥平面BB1D1D;④;⑤||=.其中正确的命题有_____________.(写出所有正确命题的序号)
②④⑤

试题分析::①∵∠BCC1为120°,而异面直线AD与CC1所成的角为60°,故①错误;
②三棱锥A1-ABD的每个面都为正三角形,故为正四面体,故②正确;
④根据向量加法的三角形法则,
,故④正确;
,所以CE与BD不垂直,故③错误;
⑤在三角形ACC1中,
,所以||=
点评:本题考查了异面直线所成的角的定义,直线与平面垂直的定义,正三棱锥的定义,向量加法的三角形法则和数量积运算性质,知识点较为综合,我们应熟练掌握每一个知识点。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图:在三棱锥中,是直角三角形,,点分别为的中点。

⑴求证:
⑵求直线与平面所成的角的大小;
⑶求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在正四棱锥S-ABCD中,的中点,P点在侧面△SCD内及其边界上运动,并且总是保持.则动点的轨迹与△组成的相关图形最有可有是图中的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)若,且异面直线的夹角为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知垂直平行四边形所在平面,若,则平行四边形一定是(填形状)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则下列命题中不正确的是(     )
A.若,则
B.若,则
C.若,则
D.若所成的角相等,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分6分)
如图,在边长为的菱形中,分别是的中点.

(1)求证: 面
(2)求证:平面⊥平面
(3)求与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧面是正三角形,且平面⊥底面

(1)求证:⊥平面
(2)求直线与底面所成角的余弦值;
(3)设,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线⊥平面,直线m平面,有下列命题:
⊥m;  ②∥m;
∥m;  ④⊥m
其中正确命题的序号是               

查看答案和解析>>

同步练习册答案