精英家教网 > 高中数学 > 题目详情
如图,三棱柱中,平面,的中点.

(1)求证:∥平面
(2)求二面角的余弦值;
(3)设的中点为,问:在矩形内是否存在点,使得平面.若存在,求出点的位置,若不存在,说明理由.
(1) 只需证;(2) ;(3)

试题分析:(1)连结,设,连结,在中,中点,
 中点,∴,又∵
∥面.      4分
(2)过且设,连结,∵,∴.又,∴,∴,∴为二面角的平面角,设为.      5分
中,,由可得
,即二面角的余弦值为.     8分
(3)以为坐标原点,轴,轴,轴建立空间直角坐标系.
依题意,得:,假设存在

平面,得:
 ∴
同理,由得:
即:在矩形内是存在点,使得平面.此时点的距离为,到的距离为.      13分 
点评:立体几何中证明线面平行或面面平行都可转化为“线线平行”,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。 (2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4) 利用对应线段成比例。 (5) 利用面面平行,等等。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图:在三棱锥中,是直角三角形,,点分别为的中点。

⑴求证:
⑵求直线与平面所成的角的大小;
⑶求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分6分)
如图,在边长为的菱形中,分别是的中点.

(1)求证: 面
(2)求证:平面⊥平面
(3)求与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧面是正三角形,且平面⊥底面

(1)求证:⊥平面
(2)求直线与底面所成角的余弦值;
(3)设,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,△是正三角形,都垂直于平面,且的中点.

(1)求证:∥平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五面体ABCDEF中,

(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,下面结论错误的是( )
A.BD//平面B.
C.D.异面直线AD与所成角为450

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线⊥平面,直线m平面,有下列命题:
⊥m;  ②∥m;
∥m;  ④⊥m
其中正确命题的序号是               

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是(  )
A.8B.7C.6D.5

查看答案和解析>>

同步练习册答案