精英家教网 > 高中数学 > 题目详情
16.已知等差数列{an}的前n项和Sn,若S2=4,S4=12,则S8等于(  )
A.36B.40C.48D.24

分析 由等差数列的性质可得S2,S4-S2,S6-S4,S8-S6成等差数列,代入已知数据计算可得.

解答 解:由等差数列的性质可得S2,S4-S2,S6-S4,S8-S6成等差数列,
∵S2=4,S4=12,∴4,8,S6-12,S8-S6成等差数列,
∴S6-12=12,S8-S6=16,解得S6=24,S8=40,
故选:B

点评 本题考查等差数列的性质,得出S2,S4-S2,S6-S4,S8-S6成等差数列是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PB的中点.
(1)求证:PD∥平面ACE;
(2)求证:PA⊥CE;
(3)在线段PC上是否存在一点F,使得BF⊥平面PAC?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)是定义在R上的奇函数,且对于任意x∈R,f(x+1)=f(x-1)-f(2),在区间(1,2)上f(x)=x2-3x+2,则f($\frac{1}{2}$)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设不等式组$\left\{\begin{array}{l}{x+y≤2}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域为M,在圆x2+y2=4内随机取一点P,则点P落在M内的概率为(  )
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,已知b=6$\sqrt{3}$,c=6,C=30°,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的通项公式an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$(n∈N*),若an+an+1=$\sqrt{11}$-3,则n=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设Sn是等差数列{an}的前n项和,若S4≥10,S5≤15,S7≥21,则a7的取值区间为[3,7].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在锐角△ABC中,三个内角A、B、C所对的边分别为a、b、c,已知acsinC=(a2+c2-b2)sinB.
(1)若∠C=$\frac{π}{6}$,求∠A的大小;
(2)若a≠b,求cosB+cosC的取值范围.

查看答案和解析>>

同步练习册答案