·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬4a=4$\sqrt{2}$£¬a2=b2+c2£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©F2£¨0£¬-1£©£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©.$\overrightarrow{A{F}_{2}}$=$¦Ë\overrightarrow{{F}_{2}B}$£¬$\frac{1}{2}¡Ü¦Ë¡Ü$1£®-x1=¦Ëx2£®ÓÉÓÚËıßÐÎPAQBÊÇÆ½ÐÐËıßÐΣ¬¿ÉµÃ$\overrightarrow{PQ}$=$\overrightarrow{PA}+\overrightarrow{PB}$=£¨x1+x2£¬y1+y2+4£©£®
ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx-1£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨k2+2£©x2-2kx-1=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ£ºk2=$\frac{-2£¨1-¦Ë£©^{2}}{{¦Ë}^{2}-6¦Ë+1}$£¬¿ÉµÃ£ºk2¡Ê$[0£¬\frac{2}{7}]$£®ÓÉÓÚ$|\overrightarrow{PQ}|$=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}+£¨{y}_{1}+{y}_{2}+4£©^{2}}$=$\sqrt{16-\frac{28{k}^{2}+48}{{k}^{4}+4{k}^{2}+4}}$£¬Áîk2=t¡Ê$[0£¬\frac{2}{7}]$£¬f£¨t£©=$\frac{7t+12}{{t}^{2}+4t+4}$£¬ÔÙÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬4a=4$\sqrt{2}$£¬a2=b2+c2£¬½âµÃa=$\sqrt{2}$£¬b=c=1£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ£º$\frac{{y}^{2}}{2}+{x}^{2}$=1£®
£¨2£©F2£¨0£¬-1£©£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©.$\overrightarrow{A{F}_{2}}$=$¦Ë\overrightarrow{{F}_{2}B}$£¬$\frac{1}{2}¡Ü¦Ë¡Ü$1£®
-x1=¦Ëx2£®
¡ßËıßÐÎPAQBÊÇÆ½ÐÐËıßÐΣ¬
$\overrightarrow{PQ}$=$\overrightarrow{PA}+\overrightarrow{PB}$=£¨x1+x2£¬y1+y2+4£©£®
ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx-1£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx-1}\\{\frac{{y}^{2}}{2}+{x}^{2}=1}\end{array}\right.$£¬»¯Îª£º£¨k2+2£©x2-2kx-1=0£¬
¡àx1+x2=$\frac{2k}{{k}^{2}+2}$£¬x1x2=$\frac{-1}{{k}^{2}+2}$£¬-x1=¦Ëx2£®
¿ÉµÃ£ºk2=$\frac{-2£¨1-¦Ë£©^{2}}{{¦Ë}^{2}-6¦Ë+1}$=$\frac{2}{\frac{4}{¦Ë+\frac{1}{¦Ë}-2}-1}$£®
¦Ë=1ʱ£¬k=0£®
$¦Ë¡Ê[\frac{1}{2}£¬1£©$ʱ£¬k2¡Ê$£¨0£¬\frac{2}{7}]$£®
×ÛÉϿɵãºk2¡Ê$[0£¬\frac{2}{7}]$£®
¡ày1+y2=kx1-1+kx2-1=k£¨x1+x2£©-2£¬
¡à$|\overrightarrow{PQ}|$=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}+£¨{y}_{1}+{y}_{2}+4£©^{2}}$
=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}+[k£¨{x}_{1}+{x}_{2}£©+2]^{2}}$
=$\sqrt{£¨\frac{2k}{{k}^{2}+2}£©^{2}+£¨\frac{2{k}^{2}}{{k}^{2}+2}+2£©^{2}}$
=$\sqrt{\frac{16{k}^{4}+36{k}^{2}+16}{{k}^{4}+4{k}^{2}+4}}$=$\sqrt{16-\frac{28{k}^{2}+48}{{k}^{4}+4{k}^{2}+4}}$£¬
Áîk2=t¡Ê$[0£¬\frac{2}{7}]$£¬f£¨t£©=$\frac{7t+12}{{t}^{2}+4t+4}$£¬
f¡ä£¨t£©=$\frac{7£¨{t}^{2}+4t+4£©-£¨7t+12£©£¨2t+4£©}{£¨t+2£©^{4}}$=$\frac{-£¨7{t}^{2}+24t+20£©}{£¨t+2£©^{4}}$£¼0£¬
¡àº¯Êýf£¨t£©ÔÚt¡Ê$[0£¬\frac{2}{7}]$Éϵ¥µ÷µÝ¼õ£¬¡àf£¨t£©¡Ê$[\frac{343}{128}£¬3]$£®
¡à$|\overrightarrow{PQ}|$¡Ê$[2£¬\frac{13\sqrt{2}}{8}]$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢ÏòÁ¿×ø±êÔËËãÐÔÖÊ¡¢Æ½ÐÐËıßÐη¨Ôò¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄ´óС¼«ÖµÓë×îÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $2\sqrt{2}$ | B£® | 4 | C£® | $¡À2\sqrt{2}$ | D£® | ¡À4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com