16£®ÒÑÖªÍÖÔ²C£º$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¬£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬F1¡¢F2·Ö±ðΪÍÖÔ²µÄÉÏ¡¢Ï½¹µã£¬¹ýµãF2×÷Ö±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬Èô¡÷ABF1Öܳ¤Îª4$\sqrt{2}$
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì
£¨2£©PÊÇyÖáÉÏÒ»µã£¬ÒÔPA¡¢PBΪÁÚ±ß×÷ƽÐÐËıßÐÎPAQB£¬ÈôPµãµÄ×ø±êΪ£¨0£¬-2£©£¬$\frac{1}{2}$¡Ü$\frac{|{F}_{2}A|}{|{F}_{2}B|}$¡Ü1£¬ÇóƽÐÐËıßÐÎPAQB¶Ô½ÇPQµÄ³¤¶Èȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬4a=4$\sqrt{2}$£¬a2=b2+c2£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©F2£¨0£¬-1£©£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©.$\overrightarrow{A{F}_{2}}$=$¦Ë\overrightarrow{{F}_{2}B}$£¬$\frac{1}{2}¡Ü¦Ë¡Ü$1£®-x1=¦Ëx2£®ÓÉÓÚËıßÐÎPAQBÊÇÆ½ÐÐËıßÐΣ¬¿ÉµÃ$\overrightarrow{PQ}$=$\overrightarrow{PA}+\overrightarrow{PB}$=£¨x1+x2£¬y1+y2+4£©£®
ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx-1£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨k2+2£©x2-2kx-1=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ£ºk2=$\frac{-2£¨1-¦Ë£©^{2}}{{¦Ë}^{2}-6¦Ë+1}$£¬¿ÉµÃ£ºk2¡Ê$[0£¬\frac{2}{7}]$£®ÓÉÓÚ$|\overrightarrow{PQ}|$=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}+£¨{y}_{1}+{y}_{2}+4£©^{2}}$=$\sqrt{16-\frac{28{k}^{2}+48}{{k}^{4}+4{k}^{2}+4}}$£¬Áîk2=t¡Ê$[0£¬\frac{2}{7}]$£¬f£¨t£©=$\frac{7t+12}{{t}^{2}+4t+4}$£¬ÔÙÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬4a=4$\sqrt{2}$£¬a2=b2+c2£¬½âµÃa=$\sqrt{2}$£¬b=c=1£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ£º$\frac{{y}^{2}}{2}+{x}^{2}$=1£®
£¨2£©F2£¨0£¬-1£©£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©.$\overrightarrow{A{F}_{2}}$=$¦Ë\overrightarrow{{F}_{2}B}$£¬$\frac{1}{2}¡Ü¦Ë¡Ü$1£®
-x1=¦Ëx2£®
¡ßËıßÐÎPAQBÊÇÆ½ÐÐËıßÐΣ¬
$\overrightarrow{PQ}$=$\overrightarrow{PA}+\overrightarrow{PB}$=£¨x1+x2£¬y1+y2+4£©£®
ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx-1£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx-1}\\{\frac{{y}^{2}}{2}+{x}^{2}=1}\end{array}\right.$£¬»¯Îª£º£¨k2+2£©x2-2kx-1=0£¬
¡àx1+x2=$\frac{2k}{{k}^{2}+2}$£¬x1x2=$\frac{-1}{{k}^{2}+2}$£¬-x1=¦Ëx2£®
¿ÉµÃ£ºk2=$\frac{-2£¨1-¦Ë£©^{2}}{{¦Ë}^{2}-6¦Ë+1}$=$\frac{2}{\frac{4}{¦Ë+\frac{1}{¦Ë}-2}-1}$£®
¦Ë=1ʱ£¬k=0£®
$¦Ë¡Ê[\frac{1}{2}£¬1£©$ʱ£¬k2¡Ê$£¨0£¬\frac{2}{7}]$£®
×ÛÉϿɵãºk2¡Ê$[0£¬\frac{2}{7}]$£®
¡ày1+y2=kx1-1+kx2-1=k£¨x1+x2£©-2£¬
¡à$|\overrightarrow{PQ}|$=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}+£¨{y}_{1}+{y}_{2}+4£©^{2}}$
=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}+[k£¨{x}_{1}+{x}_{2}£©+2]^{2}}$
=$\sqrt{£¨\frac{2k}{{k}^{2}+2}£©^{2}+£¨\frac{2{k}^{2}}{{k}^{2}+2}+2£©^{2}}$
=$\sqrt{\frac{16{k}^{4}+36{k}^{2}+16}{{k}^{4}+4{k}^{2}+4}}$=$\sqrt{16-\frac{28{k}^{2}+48}{{k}^{4}+4{k}^{2}+4}}$£¬
Áîk2=t¡Ê$[0£¬\frac{2}{7}]$£¬f£¨t£©=$\frac{7t+12}{{t}^{2}+4t+4}$£¬
f¡ä£¨t£©=$\frac{7£¨{t}^{2}+4t+4£©-£¨7t+12£©£¨2t+4£©}{£¨t+2£©^{4}}$=$\frac{-£¨7{t}^{2}+24t+20£©}{£¨t+2£©^{4}}$£¼0£¬
¡àº¯Êýf£¨t£©ÔÚt¡Ê$[0£¬\frac{2}{7}]$Éϵ¥µ÷µÝ¼õ£¬¡àf£¨t£©¡Ê$[\frac{343}{128}£¬3]$£®
¡à$|\overrightarrow{PQ}|$¡Ê$[2£¬\frac{13\sqrt{2}}{8}]$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢ÏòÁ¿×ø±êÔËËãÐÔÖÊ¡¢Æ½ÐÐËıßÐη¨Ôò¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄ´óС¼«ÖµÓë×îÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a3£¬a15ÊÇ·½³Ìx2-6x+8=0µÄ¸ù£¬Ôò$\frac{{{a_1}{a_{17}}}}{a_9}$µÄֵΪ£¨¡¡¡¡£©
A£®$2\sqrt{2}$B£®4C£®$¡À2\sqrt{2}$D£®¡À4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑ֪ȫ¼¯U=R£¬¼¯ºÏA={x|£¨x-1£©£¨x-4£©¡Ü0}£¬Ôò¼¯ºÏAµÄ²¹¼¯CUA=£¨-¡Þ£¬1£©¡È£¨4£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¸ø¶¨Áù¸öÊý×Ö£º0£¬1£¬2£¬3£¬5£¬9£®
£¨1£©´ÓÖÐÈÎÑ¡Ëĸö²»Í¬µÄÊý×Ö£¬¿ÉÒÔ×é³É¶àÉÙ¸ö²»Í¬µÄËÄλÊý£¿
£¨2£©´ÓÖÐÈÎÑ¡Ëĸö²»Í¬µÄÊý×Ö£¬¿ÉÒÔ×é³É¶àÉÙ¸ö²»Í¬µÄËÄλżÊý£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßC1£ºx2=4yºÍÔ²C2£ºx2+£¨y-5£©2=9£¬µãPÊÇÖ±Ïßy=-4Éϵ͝µã£®
£¨1£©¹ýµãP×÷Ô²C2µÄÇÐÏߣ¬ÇеãΪM£¬N£¬Èô|MN|=$\frac{3\sqrt{91}}{5}$£¬ÇóµãPµÄ×ø±ê£»
£¨2£©¹ýPËù×÷Ô²C2µÄÁ½ÌõÇÐÏߣ¬·Ö±ðÓëÇúÏßC1ÏཻÓÚµãA£¬BºÍC£¬D£¬Ë¼¿¼£ºËĵãA£¬B£¬C£¬DµÄºá×ø±êÖ®»ýÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö¶¨Öµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¹ýÍÖÔ²$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1µÄ×󽹵㣬ÇÒÓ볤Öá´¹Ö±µÄÏҵĶ˵ã×ø±êΪ$£¨-\sqrt{5}£¬¡À\frac{4}{3}£©$£¬£¬ÏÒ³¤Îª$\frac{8}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªF1£¬F2·Ö±ðΪÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬QΪÍÖÔ²CÉϵÄÒ»µã£¬ÇÒ¡÷QF1O£¨OÎª×ø±êÔ­µã£©ÎªÕýÈý½ÇÐΣ¬ÈôÉäÏßQF1ÓëÍÖÔ²½»ÓÚµãP£¬Ôò¡÷QF1F2Óë¡÷PF1F2µÄÃæ»ýµÄ±ÈÖµÊÇ$\frac{3+2\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£¬¹ýÍÖÔ²µÄ×ó½¹µãFÇÒÇãб½ÇΪ60¡ãµÄÖ±ÏßÓëÔ²x2+y2=$\frac{{b}^{2}}{{a}^{2}}$ÏàÇÐ
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl£ºy=kx+mÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãM£¬N£¨M£¬NÊÇ×ó¡¢ÓÒ¶¥µã£©£¬ÈôÒÔMNΪֱ¾¶µÄԲǡºÃ¾­¹ýÍÖÔ²CµÄÓÒ¶¥µãA£¬ÅжÏÖ±ÏßlÊÇ·ñ¹ý¶¨µã£¬ÈôÊÇ£¬Çó³ö¸Ã¶¨µãµÄ×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èôf£¨x£©=ex+ae-xΪżº¯Êý£¬Ôòf£¨x-1£©£¼$\frac{{e}^{2}+1}{e}$µÄ½â¼¯Îª£¨0£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸