精英家教网 > 高中数学 > 题目详情
在正方体
⑴求证:
⑵求异面直线所成角的大小.
⑴见解析⑵60度
本试题主要是考查了线线垂直的证明,以及异面直线所成角的大小的求解。
(1)因为正方体中AC垂直于BD,AC垂直于DD1,则利用线面垂直的判定定理得到
(2)采用平移法得到异面直线所成的角为角D1AC,,结合正方体的性质可知,夹角为600
解:因为正方体中AC垂直于BD,AC垂直于DD1,则利用线面垂直的判定定理得到
利用平移法可知,异面直线所成角的大小为60度。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,底面为菱形的四棱锥P-ABCD中,∠ABC=60°,AC="1," PA="2," PB=PD=,点M是PD的中点.

(Ⅰ)证明:PA⊥平面ABCD;
(Ⅱ)若AN为PD边的高线,求二面角M-AC-N的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,已知四棱锥中,底面,四边形是直角梯形,

(1)证明:
(2)在线段上找出一点,使平面
指出点的位置并加以证明;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分9分)
如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=3,BC=4,AB=5,点D是AB的中点.

(1)求证AC⊥BC1
(2)求证AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点,
(1)求证;
(2)求异面直线AC1与B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中点,N是BC1的中点.

(1)求证:MN//平面A1B1C1
(2)求二面角B-C1M-C的平面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面和直线l,则内至少有一条直线与l(   )
A.平行B.相交C.垂直D.异面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是(    )
A.48B.18C.24D.36

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示平面,为直线,下列命题中为真命题的是           (   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案