设数列
的前
项和为
,对一切
,点
都在函数
的图象上
(1)求
归纳数列
的通项公式(不必证明);
(2)将数列
依次按1项、2项、3项、4项循环地分为(
),
,
,
;
,
,
,
;
,…..,
分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,
求
的值;
(3)设
为数列
的前
项积,若不等式
对一切
都成立,其中
,求
的取值范围
(1)
;(2)2010;(3)![]()
【解析】
试题分析:(1)根据题意求处前几项
,利用归纳推理猜想通项公式
;(2)观察发现规律,可得:
,
是第25组中第4个括号内各数之和;(3)将恒成立问题转化为求函数的最值进行求解.
规律总结:1.归纳推理是合情推理的一种,对数学定理、结论的求解起到非常重要的作用;此类题型的关键是通过已知的项,发现内在的规律与联系,进而提出猜想;2.求序号较大的项时,往往要探索是否具有周期性;3.对于不等式的恒成立问题,主要思路是将所求参数进行分离,将其转化为求函数的最值问题.
试题解析:(1)因为点
在函数
的图象上,
故
,所以
.
令
,得
,所以
;
令
,得
,所以
;
令
,得
,所以
.
由此猜想:![]()
(2)因为
(
),所以数列
依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),…. 每一次循环记为一组.由于每一个循环含有4个括号, 故
是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20. 同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20. 故各组第4个括号中各数之和构成等差数列,且公差为80. 注意到第一组中第4个括号内各数之和是68,
所以
.又
=22,所以
=2010.
(3)因为
,故
,
所以
.
又
,
故
对一切
都成立,就是
对一切
都成立
设
,则只需
即可.
由于![]()
,
所以
,故
是单调递减,于是
.
令
,
即
,解得
,或
.
综上所述,使得所给不等式对一切
都成立的实数
的取值范围是
.
考点:1.归纳推理;2.等差数列;3.函数的单调性
科目:高中数学 来源:2016届甘肃省高一下学期期中考试数学试卷(解析版) 题型:选择题
没有信息损失的统计图表是 ( )
A.条形统计图 B.扇形统计图 C.折线统计图 D.茎叶图
查看答案和解析>>
科目:高中数学 来源:2016届湖南省高一下学期6月五科联赛数学试卷(解析版) 题型:选择题
等比数列
的前
项和为4,前
项和为12,则它的前
项和是
A.28 B.48 C.36 D.52
查看答案和解析>>
科目:高中数学 来源:2016届湖南省衡南县高一下学期期末考试数学试卷(解析版) 题型:填空题
某公司的广告费支出
与销售额
(单位:万元)之间有下列对应数据:由资料显示
对
呈线性相关关系。
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
根据上表提供的数据得到回归方程
中的
,预测销售额为115万元时约
需 万元广告费.
查看答案和解析>>
科目:高中数学 来源:2016届湖南省益阳市高一下学期期中考试数学试卷(解析版) 题型:选择题
已知函数y=Asin(ωx+φ)(A>0,ω>0)在同一周期内,当x=
时,ymax=2;当
时,ymin=-2.那么函数的解析式为 ( )
A.y=2sin(2x+
) B.y=2sin(
-
)
C.y=2sin(2x+
) D.y=2sin(2x-
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com