精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=tanωx在区间(-$\frac{π}{2}$,$\frac{π}{2}$)内是减函数,则ω的取值范围是(  )
A.[1,+∞)B.(-∞,-1]C.[1,0)D.(0,1]

分析 由正切函数的图象与性质,得出关于ω的不等式组,求出解集即可.

解答 解:函数f(x)=tanωx在区间(-$\frac{π}{2}$,$\frac{π}{2}$)内是减函数,
∴ω<0,且$\frac{π}{|ω|}$≥π,
解得-1≤ω<0,
∴ω的取值范围是[-1,0).
故选:C.

点评 本题考查了正切函数的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在下列条件中,可以判断三角形有两解的是(  )
A.A=30°.B=45°.c=10B.a=$\sqrt{3}$.c=$\sqrt{2}$.B=45°
C.a=14.c=16.A=45°D.c=7.b=5.C=80°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设全集U={1,2,3,4,5},集合A={1,2},B={2,4},则CU(A∪B)=(  )
A.{1,3,4,5}B.{1,4}C.{1,2,4}D.{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平行四边形ABCD中,E,F分别是BC,DC上的点,且满足$\overrightarrow{BE}$=$\overrightarrow{EC}$,$\overrightarrow{DF}$=2$\overrightarrow{FC}$,记$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,试以$\overrightarrow a,\overrightarrow b$为平面向量的一组基底.利用向量的有关知识解决下列问题;
(Ⅰ)用$\overrightarrow a,\overrightarrow b$来表示向量$\overrightarrow{DE}与\overrightarrow{BF}$;
(Ⅱ)若|AB|=3,|AD|=2,且|BF|=$\sqrt{3}$,求|$\overrightarrow{DE}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若等比数列{an}的各项均为正数,且a10a11+a9a12=2e3(e为自然对数的底数),则lna1+lna2+…+lna20=(  )
A.20B.30C.40D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sin($\frac{π}{3}$+α)=$\frac{3}{5}$,$\frac{π}{6}$<α<$\frac{2π}{3}$,则cosα=$\frac{3\sqrt{3}-4}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列命题中,正确的命题有②④.
①回归直线$\hat y=\hat bx+\hat a$恒过样本点的中心$(\overline x,\overline y)$,且至少过一个样本点;
②将一组数据的每个数据都加一个相同的常数后,方差不变;
③用相关指数R2来刻画回归效果,R2越接近0,说明模型的拟合效果越好;
④用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第一组中用抽签法确定的号码为6号.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义函数max{f(x),g(x)}=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,则max{sinx,cosx}的最小值为-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某兴趣小组有9名学生.若从9名学生中选取3人,则选取的3人中恰好有一个女生的概率是$\frac{15}{28}$.
(1)该小组中男女学生各多少人?
(2)9个学生站成一列队,现要求女生保持相对顺序不变(即女生 前后顺序保持不变)重新站队,问有多少种重新站队的方法?(要求用数字作答)
(3)9名学生站成一列,要求男生必须两两站在一起,有多少种站队的方法?(要求用数字作答)

查看答案和解析>>

同步练习册答案