【题目】在平面直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)若直线l1,l2的极坐标方程分别为,,设直线l1,l2与曲线C的交点分别为O,M和O,N,求△OMN的面积.
科目:高中数学 来源: 题型:
【题目】关于函数,下列判断正确的是( )
A. 有最大值和最小值
B. 的图象的对称中心为()
C. 在上存在单调递减区间
D. 的图象可由的图象向左平移个单位而得
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下面左图,在直角梯形中,,,,,,点在上,且,将沿折起,得到四棱锥(如下面右图).
(1)求四棱锥的体积的最大值;
(2)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是定义在[-1,1]上的奇函数且,若ab∈[-1,1],a+b≠0,有成立.
(1)判断函数在[-1,1]上是增函数还是减函数,并加以证明.
(2)解不等式.
(3)若对所有, 恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出条较为详细的评价信息进行统计,车辆状况的优惠活动评价的列联表如下:
对优惠活动好评 | 对优惠活动不满意 | 合计 | |
对车辆状况好评 | |||
对车辆状况不满意 | |||
合计 |
(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过向用户随机派送每张面额为元,元,元的 三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得元券,获得元券的概率分别是,,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.
参考数据:
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.
(1)求实数k的取值范围;
(2)证明:f(x)的极大值不小于1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为的椭圆的左顶点为,左焦点为,及点,且、、成等比数列.
(1)求椭圆的方程;
(2)斜率不为的动直线过点且与椭圆相交于、两点,记,线段上的点满足,试求(为坐标原点)面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.
某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为4,直线被椭圆截得的线段长为.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点作互相垂直的两条直线分别交椭圆于两点(点不同于椭圆的右顶点),证明:直线过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com