【题目】如下面左图,在直角梯形中,,,,,,点在上,且,将沿折起,得到四棱锥(如下面右图).
(1)求四棱锥的体积的最大值;
(2)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知抛物线,直线与抛物线交于,两点,分别过,作抛物线的切线,两切线交于点.
(1)若直线变动时,点始终在以为直径的圆上,求动点的轨迹方程;
(2)设圆,若直线与圆相切于点(点在线段上).是否存在点使得?若存在,求出点坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小商品生产厂家计划每天生产型、型、型三种小商品共100个,生产一个型小商品需5分钟,生产一个型小商品需7分钟,生产一个型小商品需4分钟,已知总生产时间不超过10小时.若生产一个型小商品可获利润8元,生产一个型小商品可获利润9元,生产一个型小商品可获利润6元.该厂家合理分配生产任务使每天的利润最大,则最大日利润是__________元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:
分组 | ||||||
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计我校7000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人;
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列,满足:对任意正整数,都有,,成等差数列,,,成等比数列,且,.
(Ⅰ)求证:数列是等差数列;
(Ⅱ)求数列,的通项公式;
(Ⅲ)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)若直线l1,l2的极坐标方程分别为,,设直线l1,l2与曲线C的交点分别为O,M和O,N,求△OMN的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com