精英家教网 > 高中数学 > 题目详情

【题目】如下面左图,在直角梯形中,,点上,且,将沿折起,得到四棱锥(如下面右图).

1)求四棱锥的体积的最大值;

2)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.

【答案】1;(2)存在,

【解析】

1)当平面平面时,体积最大;根据已知条件,求得底面面积和棱锥的高,即可求得体积的最大值;

2)构造与平面平行的平面,即可容易求得点所在位置.

1)由题意,要使得四棱锥的体积最大,就要使平面平面.

中点,连接.如下图所示:

平面平面,平面平面.平面.

平面

,则

四棱锥的体积的最大值为.

2)过点于点,则

过点于点,连接,则

平面平面平面

平面平面平面

平面平面

平面平面

所以在上存在点,使得平面,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线与抛物线交于两点,分别过作抛物线的切线,两切线交于点.

1)若直线变动时,点始终在以为直径的圆上,求动点的轨迹方程;

2)设圆,若直线与圆相切于点(点在线段上).是否存在点使得?若存在,求出点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小商品生产厂家计划每天生产型、型、型三种小商品共100个,生产一个型小商品需5分钟,生产一个型小商品需7分钟,生产一个型小商品需4分钟,已知总生产时间不超过10小时.若生产一个型小商品可获利润8元,生产一个型小商品可获利润9元,生产一个型小商品可获利润6元.该厂家合理分配生产任务使每天的利润最大,则最大日利润是__________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:

分组

男生人数

2

16

19

18

5

3

女生人数

3

20

10

2

1

1

若将平均每日参加体育锻炼的时间不低于120分钟的学生称为锻炼达人”.

1)将频率视为概率,估计我校7000名学生中锻炼达人有多少?

2)从这100名学生的锻炼达人中按性别分层抽取5人参加某项体育活动.

①求男生和女生各抽取了多少人;

②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的空间几何体中,四边形为直角梯形,,且平面平面为棱中点.

1)证明:

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列满足:对任意正整数,都有成等差数列,成等比数列,且

)求证:数列是等差数列;

)求数列的通项公式;

)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)若直线l1l2的极坐标方程分别为,设直线l1l2与曲线C的交点分别为OMON,求OMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别是.

1)求

2)点DBC延长线上一点,CD=4,求△ABC的面积.

查看答案和解析>>

同步练习册答案