精英家教网 > 高中数学 > 题目详情
已知数列An:a1,a2,…,an,满足a1=an=0,且当2≤k≤n(k∈N*)时,.令S(An)=a1+a2+…+an
(Ⅰ)写出S(A5)的所有可能取值;
(Ⅱ)求S(An)的最大值.
【答案】分析:(Ⅰ)根据新定义,分类,即可求S(A5)的所有可能取值;
(Ⅱ)由,可设ak-ak-1=ck-1,可得an=a1+c1+c2+…+cn-1,根据a1=an=0,可得c1+c2+…+cn-1=0,且n为奇数,c1,c2,…,cn-1是由个1和个-1构成的数列,由此可得当c1,c2,…,cn-1的前项取1,后项取-1时S(An)最大.
解答:解:(Ⅰ)由题设,满足条件的数列A5的所有可能情况有:
(1)0,1,2,1,0.此时S(A5)=4;
(2)0,1,0,1,0.此时S(A5)=2;
(3)0,1,0,-1,0.此时S(A5)=0;
(4)0,-1,-2,-1,0.此时S(A5)=-4;
(5)0,-1,0,1,0.此时S(A5)=0;
(6)0,-1,0,-1,0.此时S(A5)=-2.
所以,S(A5)的所有可能取值为:-4,-2,0,2,4..…(5分)
(Ⅱ)由,可设ak-ak-1=ck-1,则ck-1=1或ck-1=-1(2≤k≤n,k∈N*),a2-a1=c1,a3-a2=c2
…an-an-1=cn-1
所以an=a1+c1+c2+…+cn-1.                               …(7分)
因为a1=an=0,所以c1+c2+…+cn-1=0,且n为奇数,c1,c2,…,cn-1是由个1和个-1构成的数列.
所以S(An)=c1+(c1+c2)+…+(c1+c2+…+cn-1)=(n-1)c1+(n-2)c2+…+2cn-2+cn-1
则当c1,c2,…,cn-1的前项取1,后项取-1时S(An)最大,
此时S(An)==..…(10分)
证明如下:
假设c1,c2,…,cn-1的前项中恰有t项取-1,则c1,c2,…,cn-1的后项中恰有t项取1,其中,i=1,2,…,t.
所以S(An)==-2[(n-m1)+(n-m2)+…+(n-mt)]+2[(n-n1)+(n-n2)+…+(n-nt)]=
所以S(An)的最大值为..…(13分)
点评:本题考查新定义,考查学生分析解决问题的能力,考查反证法的运用,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an满足a1=1,且4an+1-anan+1+2an=9(n∈N*
(1)求a1,a2,a3,a4的值;
(2)由(1)猜想an的通项公式,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an满足a1=2,
an+1
2an
=1+
1
n

(Ⅰ)求数列an的通项公式;
(Ⅱ)若数列{
an
n
}
的前n项和为Sn,试比较an-Sn与2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an满足a1=1,an+1=(1+cos2
2
)an+sin2
2
,n∈N*

(1)求a2,a3,a4;并求证:a2m+1+2=2(a2m-1+2),(m∈N*);
(2)设bn=
a2n
a2n-1
Sn=b1+b2+…+bn
,求证:Sn<n+
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区二模)已知数列An:a1,a2,…,an.如果数列Bn:b1,b2,…,bn满足b1=an,bk=ak-1+ak-bk-1,其中k=2,3,…,n,则称Bn为An的“生成数列”.
(1)若数列A4:a1,a2,a3,a4的“生成数列”是B4:5,-2,7,2,求A4
(2)若n为偶数,且An的“生成数列”是Bn,证明:Bn的“生成数列”是An
(3)若n为奇数,且An的“生成数列”是Bn,Bn的“生成数列”是Cn,….依次将数列An,Bn,Cn,…的第i(i=1,2,…,n)项取出,构成数列Ωi:ai,bi,ci,…证明:数列Ωi是等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an满足a1+2a2+22a3+…+2n-1an=
n
2
(n∈N*).
(Ⅰ)求数列{an}的通项;
(Ⅱ)若bn=
n
an
求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案