精英家教网 > 高中数学 > 题目详情
10.已知$\overrightarrow{AC}$=(cos$\frac{x}{2}$+sin$\frac{x}{2}$,sin$\frac{x}{2}$),$\overrightarrow{BC}$=(sin$\frac{x}{2}$-cos$\frac{x}{2}$,2cos$\frac{x}{2}$),
(1)设f(x)=$\overrightarrow{AC}$•$\overrightarrow{BC}$,求f(x)的最小正周期及在区间[0,$\frac{π}{2}$]上的最值;
(2)设x1,x2为f(x)=$\frac{\sqrt{6}}{2}$在(π,3π)内的两个实数根,求x1+x2的值.

分析 (1)根据向量数量积的坐标表示,利用二倍角公式及辅助角公式将f(x)化简,根据周期公式及正弦函数图象及性质即可求得求f(x)的最小正周期及在区间[0,$\frac{π}{2}$]上的最值;
(2)由f(x)=$\frac{\sqrt{6}}{2}$,求得sin(x-$\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$,根据正弦函数的对称性即可求得x1+x2的值.

解答 解:(1)f(x)=$\overrightarrow{AC}$•$\overrightarrow{BC}$=(cos$\frac{x}{2}$+sin$\frac{x}{2}$)•(sin$\frac{x}{2}$-cos$\frac{x}{2}$)+sin$\frac{x}{2}$•2cos$\frac{x}{2}$,
=sin2$\frac{x}{2}$-cos2$\frac{x}{2}$+2sin$\frac{x}{2}$cos$\frac{x}{2}$,
=sinx-cosx,
=$\sqrt{2}$sin(x-$\frac{π}{4}$),
由T=$\frac{2π}{ω}$=2π,
x∈[0,$\frac{π}{2}$],x-$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{π}{4}$],
由正弦函数图象可知f(x)的最大值为1,最小值为-1,
f(x)在区间[0,$\frac{π}{2}$]上的最大值为1,最小值为-1;
(2)f(x)=$\frac{\sqrt{6}}{2}$,即sin(x-$\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$,x1-$\frac{π}{4}$,x2-$\frac{π}{4}$关于x=$\frac{π}{2}$+2kπ(k∈Z)对称,
由x1,x2∈(π,3π),x1-$\frac{π}{4}$,x2-$\frac{π}{4}$关于x=$\frac{π}{2}$+2π对称,
由正弦函数图象可知:x1+x2=($\frac{π}{2}$+2π)×2+$\frac{π}{4}$×2=$\frac{11π}{2}$,
∴x1+x2=$\frac{11π}{2}$.

点评 本题考查平面向量数量积的坐标表示,考查三角函数恒等变换的应用,三角函数周期公式,正弦函数的图象和性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设函数f′(x)=x2+3x-4,则y=f(x+1)的单调减区间为(-5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在直角△ABC中,AB⊥BC,D为BC的中点,以AB为直径作圆O,分别交AC、AD于点E,F,若AF=3,FD=1,则AE等于(  )
A.$\sqrt{6}$B.$\frac{6\sqrt{7}}{7}$C.$\frac{8\sqrt{7}}{7}$D.$\frac{4\sqrt{21}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,并用简单随机抽样方法抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(Ⅰ)求x的值并估计该校3000名学生中读书谜大概有多少?(将频率视为概率)
(Ⅱ)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
非读书迷读书迷合计
 15 
  45
合计  
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查方法来估计该地区的学生的课外阅读时间?说明理由.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是某运动员在某个赛季得分的茎叶图统计表,则该运动员得分的中位数是(  )
A.2B.24C.23D.26

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知四面体ABCD中,E,F分别是AC,BD的中点,若AB=4,CD=2,EF⊥AB,则EF与CD所成角的度数为(  )
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知回归方程$\widehat{y}$=2x+1,而试验得到一组数据是(2,4.9),(3,7.1),(4,9.1),则残差平方和是0.03.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某校某班级有42人,该班委会决定每月第一周的周一抽签决定座位,该班级座位排成6列7行,同学先在写有1、2、3、4、5、6的卡片中任取一张,确定所在列,再在写有1、2、3、4、5、6、7的卡片中任取一张确定所在行,如先后抽到卡片为2、5,则此同学座位为第2列第5行,在一学期的5次抽签中,该班班长5次位置均不相同的概率是(  )
A.$\frac{1}{{{{42}^5}}}$B.$\frac{1}{{{{42}^4}}}$C.$\frac{{A}_{42}^{5}}{4{2}^{5}}$D.$\frac{{P_{42}^4}}{{{{42}^5}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.参数方程$\left\{\begin{array}{l}{x=\sqrt{{t}^{2}+2t+3}}\\{y=\sqrt{{t}^{2}+2t+2}}\end{array}\right.$(t为参数)表示的曲线是(  )
A.双曲线x2-y2=1B.双曲线x2-y2=1的右支
C.双曲线x2-y2=1且x≥0,y≥0D.以上结论都不对

查看答案和解析>>

同步练习册答案