精英家教网 > 高中数学 > 题目详情

在△ABC中,角A、B、C所对的边分别为a、b、c,q=(,1),p=()且

(1)求的值;

(2)求三角函数式的取值范围?

 

【答案】

(1);(2).

【解析】

试题分析:(1)由向量平行的坐标表示可知,,利用正弦定理将此式转化为,再结合以及可解得,,根据特殊角的三角函数值可知,,从而解得;(2)先由二倍角公式、同角三角函数的基本关系、差角公式将函数式化简得到函数式,由,先求出,从而由三角函数的图像与性质得到,即是所求.

试题解析:(1)∵,∴

根据正弦定理得,

,∴

又∵,∴

.                            6分

(2)由已知得,

,∴

∴三角函数式的取值范围是:.                  12分

考点:1.向量平行的坐标表示;2.特殊角的三角函数值;3.正弦定理;4.三角函数的图像与性质;5.二倍角公式

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案