精英家教网 > 高中数学 > 题目详情

【题目】已知函数

若函数处的切线平行于直线求实数a的值

)判断函数在区间上零点的个数;

)在()的条件下,若在上存在一点使得成立,求实数的取值范围.

【答案】12时, 无零点 时, 恰有一个零点 时, 有两个零点3

【解析】试题分析:(1)利用导数的几何意义,得 ;(2)函数的零点个数等价于两个函数的交点的个数,即的交点个数;(3)不等式能成立问题转化为函数的最值问题.

试题解析:

(Ⅰ),函数处的切线平行于直线

..

(Ⅱ)令

由此可知

上递减,在上递增,

时, 无零点

时, 恰有一个零点

时, 有两个零点

(Ⅲ)在上存在一点,使得成立等价于函数上的最小值小于零.

,

①当时,即时, 上单调递减,所以的最小值为,由可得,

②当时,即时, 上单调递增,所以的最小值为,由可得

③当时,即时,可得的最小值为此时, 不成立.

综上所述:可得所求的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 分别为椭圆 的左、右焦点, 为短轴的一个端点, 是椭圆上的一点,满足,且的周长为.

(1)求椭圆的方程;

(2)设点是线段上的一点,过点且与轴不垂直的直线交椭圆两点,若是以为顶点的等腰三角形,求点到直线距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系.求y关于x的线性回归方程,并预测M公司2017年4月份(即x=7时)的市场占有率;

(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的AB两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:


报废年限

车型

1年

2年

3年

4年

总计

A

20

35

35

10

100

B

10

30

40

20

100

经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

参考数据:

(参考公式:回归直线方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果设奇函数f(x)在(0,+∞)上为增函数,且f(2)=0,则不等式 <0的解集为(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax﹣a(其中a∈R,e是自然对数的底数,e=2.71828…).
(Ⅰ)当a=e时,求函数f(x)的极值;
(Ⅱ)若f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义运算则函数f(x)=1*2x的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象(  )

A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向右平移个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R.
(1)解关于x的不等式|x﹣1|+a﹣1>0(a∈R);
(2)记A为(1)中不等式的解集,B为不等式组 的整数解集,若(UA)∩B恰有三个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为F(-,0),且过点D(2,0).
(1)求该椭圆的标准方程;
(2)设点A(1,),若P是椭圆上的动点,求线段PA的中点M的轨迹方程.

查看答案和解析>>

同步练习册答案