精英家教网 > 高中数学 > 题目详情

【题目】每年的寒冷天气都会带热御寒经济,以交通业为例,当天气太冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:℃)与网上预约出租车订单数(单位:份)

日平均气温(℃)

6

4

2

网上预约订单数

100

135

150

185

210

1)经数据分析,一天内平均气温与该出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程,并预测日平均气温为时,该出租车公司的网约订单数;

2)天气预报未来5天有3天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求恰有1天网约订单数不低于210份的概率.

附:回归直线的斜率和截距的最小二乘法估计分别为:

【答案】1232;(2

【解析】

(1) 根据公式代入求解;

(2) 先列出基本事件空间,再列出要求的事件,最后求概率即可.

解:(1)由表格可求出代入公式求出

所以,所以

时,.

所以可预测日平均气温为时该出租车公司的网约订单数约为232.

2)记这5天中气温不高于的三天分别为,另外两天分别记为,则在这5天中任意选取2天有,共10个基本事件,其中恰有1天网约订单数不低于210份的有,共6个基本事件,

所以所求概率,即恰有1天网约订单数不低于20份的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】自从高中生通过高校自主招生可获得加分进入高校的政策出台后,自主招生越来越受到高中生家长的重视.某机构为了调查城市和城市的高中家长对于自主招生的关注程度,在这两个城市中抽取了名高中生家长进行了调查,得到下表:

关注

不关注

合计

城高中家长

20

50

城高中家长

20

合计

100

1)完成上面的列联表;

2)根据上面列联表的数据,是否有的把握认为家长对自主招生关注与否与所处城市有关;

3)为了进一步研究家长对自主招生的直法,该机构从关注的学生家长里面,按照分层抽样方法抽取了人,并再从这人里面抽取人进行采访,求所抽取的人恰好两城市各一人的概率.

附:(其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,已知().

1)证明数列是等比数列,并求出数列的通项公式;

2)若(为非零常数),问是否存在整数,使得对任意都有?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆左右焦点分别为

若椭圆上的点的距离之和为,求椭圆的方程和焦点的坐标;

关于对称的两点,上任意一点,直线的斜率都存在,记为,求证:之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()

(结果精确到0.1.参考数据:lg20.3010lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过点且与轴垂直的直线被椭圆截得的线段长为,且与短轴两端点的连线相互垂直.

1)求椭圆的方程;

2)若圆上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市在精准扶贫和生态文明建设的专项工作中,为改善农村生态环境,建设美丽乡村,开展农村生活用水排污管道村村通”.已知排污管道外径为1米,当两条管道并行经过一块农田时,如图,要求两根管道最近距离不小于0.25米,埋没的最小覆土厚度(路面至管顶)不低于0.5.埋设管道前先挖掘一条横截面为等腰梯形的沟渠,且管道所在的两圆分别与两腰相切..

1)为了减少农田的损毁,则当为何值时,挖掘的土方量最少?

2)水管用吊车放入渠底前需了解吊绳的长度,在(1)的条件下计算长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有两台不同机器生产同一种产品各10万件,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如图所示:

该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.

1)完成下列列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为机器生产的产品比机器生产的产品好;

生产的产品

生产的产品

合计

良好以上(含良好)

合格

合计

2)根据所给数据,以事件发生的频率作为相应事件发生的概率,从两台不同机器生产的产品中各随机抽取2件,求4件产品中机器生产的优等品的数量多于机器生产的优等品的数量的概率;

3)已知优秀等级产品的利润为12/件,良好等级产品的利润为10/件,合格等级产品的利润为5/件,机器每生产10万件的成本为20万元,机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?

附:独立性检验计算公式:.

临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在梯形中,,过分别作,垂足分别为.,已知,将梯形沿同侧折起,得空间几何体,如图2.

1)若,证明:平面.

2)若是线段上靠近点的三等分点,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案