精英家教网 > 高中数学 > 题目详情
已知函数
(1)若是增函数,求的取值范围;
(2)已知,对于函数图象上任意不同两点,,其中,直线的斜率为,记,若求证:.
(1);(2)详见解析

试题分析:(1)先求,由题意恒成立,参变分离得,进而求的取值范围;
(2)首先将向量式坐标化,得三点坐标的关系,表示,进而表示,然后根据两点坐标结合函数的解析式表示,再后作差比较
-,因为,故只需证明,再恒等变形为,进而,设,构造自变量为的函数,求其最大值,只需说明最大值小于0.
试题解析:(1)由,又当时,,所以
(II),∵
,∴
+1,-,∵
,∴,要证,只要证
,设,则
显然,考虑上的单调性,
,对称轴,则,故递减,则有,故.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)如果存在零点,求的取值范围
(2)是否存在常数,使为奇函数?如果存在,求的值,如果不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数上为增函数,且,求解下列各题:
(1)求的取值范围;
(2)若上为单调增函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知函数 .
(I)求的极大值和极小值;
(II)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,求函数的最大值;
(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;
(3)当时,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,试确定函数在其定义域内的单调性;
(2)求函数上的最小值;
(3)试证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则函数的零点所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数.若函数的零点为,函数的零点为,则有(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线在点处的切线经过点,则    ______

查看答案和解析>>

同步练习册答案