精英家教网 > 高中数学 > 题目详情
设m,n∈N,f(x)=(1+x)m+(1+x)n
(1)当m=n=7时,若f(x)=a7x7+a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a0求a0+a2+a4+a6
(2)当m=n时,若f(x)展开式中x2的系数是20,求n的值.
(3)f(x)展开式中x的系数是19,当m,n变化时,求x2系数的最小值.
分析:(1)本题可以应用赋值法分别令x=1,x=-1,写出两个等式,把两个等式相加得到要求的下标是偶数的系数的和.
(2)写出二项式的展开式,根据当m=n时,f(x)展开式.中x2的系数是20,得到T3=2Cn2x2=20x2,求出n的值.
(3)要求一个系数的最小值,首先表示出这个项的系数,根据m,n之间的关系,代入系数的表示式,根据二次函数的最值求法得到结果.
解答:解:(1)本题可以应用赋值法:分别令x=1,x=-1,
28=a7+a6+a5+a4+a3+a2+a1+a0
0=-a7+a6-a5+a4-a3+a2-a1+a0
两个式子相加得a0+a2+a4+a6=128…(4分)
(2)∵当m=n时,f(x)展开式中x2的系数是20,
∴T3=2Cn2x2=20x2
∴n=5…(8分)
(3)当m+n=19,
x2的系数为:
C
2
m
+
C
2
n
=
1
2
m(m-1)+
1
2
n(n-1)

=
1
2
[(m+n)2-2mn-(m+n)]=171-mn=171-(19-n)n
=(n-
19
2
)2+
323
4

∴当n=10或n=9时,f(x)展开式中x2的系数最小为81.…(12分)
点评:本题考查二项式定理的应用,本题解题的关键是正确利用二项式的展开式,本题还结合二次函数的性质,是一个综合题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m,n∈N,f(x)=(1+2x)m+(1+x)n
(Ⅰ)当m=n=2011时,记f(x)=a0+a1x+a2x2+…+a2011x2011,求a0-a1+a2-…-a2011
(Ⅱ)若f(x)展开式中x的系数是20,则当m、n变化时,试求x2系数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n∈N,f(x)=(1+x)m+(1+x)n
(1)当m=n=7时,f(x)=a7x7+a6x6+…+a1x+a0,求a0+a2+a4+a6
(2)若f(x) 展开式中 的系数是19,当 m,n变化时,求x2系数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设m,n∈N,f(x)=(1+x)m+(1+x)n
(1)当m=n=7时,f(x)=a7x7+a6x6+…+a1x+a0,求a0+a2+a4+a6
(2)若f(x) 展开式中 的系数是19,当 m,n变化时,求x2系数的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省泉州一中高二(下)期末数学试卷(理科)(解析版) 题型:解答题

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f'(x)满足0<f'(x)<1.”
(1)判断函数是否是集合M中的元素,并说明理由;
(2)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]30D,都存在-15P[m,n],使得等式f(n)-f(m)=(n-m)f'(x)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(3)设是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.

查看答案和解析>>

同步练习册答案