【题目】如图:在四棱锥
中,底面
是菱形,
,
平面
,点
为
的中点,且
.
(1)证明:
面
;
(2)求三棱锥
的体积;
(3)在线段
上是否存在一点
,使得
平面
;若存在,求出
的长;若不存在,说明理由.
![]()
【答案】证明:(I)因为ABCD为菱形,所以AB=BC
又∠ABC=60°,所以AB=BC=AC, ………………1分
又M为BC中点,所以BC⊥AM ………………2分
而PA⊥平面ABCD,BC
平面ABCD,所以PA⊥BC ………………4分
又PA∩AM=A,所以BC⊥平面AMN ………………5分
(II)因为
………………6分
又PA⊥底面ABCD,PA=2,所以AN=1
所以,三棱锥N—AMC的体积
………………8分
………………9分
(III)存在 ………………10分
取PD中点E,连结NE,EC,AE,
因为N,E分别为PA,PD中点,所以
………………11分
又在菱形ABCD中, ![]()
所以NE
,即MCEN是平行四边形 ………………12分
所以,NM//EC,
又EC
平面ACE,NM
平面ACE
所以MN//平面ACE, ………………13分
即在PD上存在一点E,使得NM//平面ACE,
此时![]()
【解析】略
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,二次函数
的图象与
轴交于
,
两点,点
的坐标为
.当
变化时,解答下列问题:
(1)以
为直径的圆能否经过点
?说明理由;
(2)过
,
,
三点的圆在
轴上截得的弦长是否为定值?若是,则求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
与抛物线
共焦点
,抛物线上的点M到y轴的距离等于
,且椭圆与抛物线的交点Q满足
.
(I)求抛物线的方程和椭圆的方程;
(II)过抛物线上的点
作抛物线的切线
交椭圆于
、
两点,求此切线在x轴上的截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图所示.
![]()
(1)求直方图中
的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量在
,
,
的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在
的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
(
为参数),在以原点
为极点,
轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为:
.
(Ⅰ)求曲线
的普通方程和直线的直角坐标方程;
(Ⅱ)过点
且与直线平行的直线
交
于
,
两点,求点
到
,
两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市积极倡导学生参与绿色环保活动,其中代号为“环保卫士—12369”的绿色环保活动小组对2014年1月—2014年12月(一年)内空气质量指数
进行监测,下表是在这一年随机抽取的100天的统计结果:
指数API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中重度污染 | 重度污染 |
天数 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(1)若某市某企业每天由空气污染造成的经济损失
(单位:元)与空气质量指数
(记为
)的关系为:
,在这一年内随机抽取一天,估计该天经济损失
元的概率;
(2)若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,
列联表,并判断是否有
的把握认为某市本年度空气重度污染与供暖有关?
非重度污染 | 重度污染 | 合计 | |
供暖季 | |||
非供暖季节 | |||
合计 | 100 |
下面临界值表供参考.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,顺次连接椭圆
的四个顶点得到的四边形的面积为16.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过椭圆
的顶点
的直线
交椭圆于另一点
,交
轴于点
,若
、
、
成等比数列,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,点
在函数
图像上;
(1)证明
是等差数列;
(2)若函数
,数列
满足
,记
,求数列
前
项和
;
(3)是否存在实数
,使得当
时,
对任意
恒成立?若存在,求出最大的实数
,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com