精英家教网 > 高中数学 > 题目详情

【题目】某城市100户居民的月平均用电量(单位:度),以 分组的频率分布直方图如图所示.

(1)求直方图中的值;

(2)求月平均用电量的众数和中位数;

(3)在月平均用电量在 的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在的用户中应抽取多少户?

【答案】(1)0.0075;(2)224;(3)5.

【解析】试题分析:(1)由频率和为1,计算图中x的值;(2)根据频率分布直方图观察,最高矩形的中点横坐标即为众数,令矩形面积和为,所取得的横坐标为中位数;(3)分别计算出月平均用电量在 的三组用户的数量,根据分层抽样的定义计算出抽取比例,得出月平均用电量在的用户中应抽取的户数.

试题解析:

(1)由直方图的性质,可得 ,所以直方图中的值是

(2)月平均用电量的众数是. 

因为

所以月平均用电量的中位数在内,

设中位数为,由,得

所以月平均用电量的中位数是224.

(3)月平均用电量为的用户有户,

月平均用电量为的用户有户,

月平均用电量为的用户有户,

抽取比例

所以月平均用电量在的用户中应抽取户.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 底面,底面是直角梯形, ,点上,且

(Ⅰ)已知点上,且,求证:平面平面

(Ⅱ)当二面角的余弦值为多少时,直线与平面所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时, (万元).当年产量不小于80千件时, (万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.

(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;

(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下图中,四边形 ABCD是等腰梯形, OQ分别为线段ABCD的中点,OQEF的交点为POP=1,PQ=2,现将梯形ABCD沿EF折起,使得,连结ADBC,得一几何体如图所示.

(Ⅰ)证明:平面ABCD平面ABFE

(Ⅱ)若上图中, ,CD=2,求平面ADE与平面BCF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥中,底面是菱形, 平面,点的中点,且.

(1)证明:

(2)求三棱锥的体积;

(3)在线段上是否存在一点,使得平面;若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市两所高中分别组织部分学生参加了“七五普法网络知识大赛”,现从这两所学校的参赛学生中分别随机抽取30名学生的成绩(百分制)作为样本,得到样本数据的茎叶图如图所示.

(Ⅰ)若乙校每位学生被抽取的概率为0.15,求乙校参赛学生总人数;

(Ⅱ)根据茎叶图,从平均水平与波动情况两个方面分析甲、乙两校参赛学生成绩(不要求计算);

(Ⅲ)从样本成绩低于60分的学生中随机抽取3人,求3人不在同一学校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x2﹣1)=loga (a>0且a≠1)
(1)求函数f(x)的解析式,并判断f(x)的奇偶性;
(2)解关于x的方程f(x)=loga

查看答案和解析>>

同步练习册答案