【题目】已知下图中,四边形 ABCD是等腰梯形, , ,O、Q分别为线段AB、CD的中点,OQ与EF的交点为P,OP=1,PQ=2,现将梯形ABCD沿EF折起,使得,连结AD、BC,得一几何体如图所示.
(Ⅰ)证明:平面ABCD平面ABFE;
(Ⅱ)若上图中, ,CD=2,求平面ADE与平面BCF所成锐二面角的余弦值.
【答案】(1)见解析;(2).
【解析】试题分析:(1)先根据, 得⊥平面,故,结合勾股定理,由线面垂直判定定理可得 平面,由面面垂直判定定理可得结论;(2)以为原点, 所在的直线为轴建立空间直角坐标系,可求得面的一个法向量,面的一个法向量,求出向量夹角即可.
试题解析: (1)证明:在图中,四边形为等腰梯形, 分别为线段的中点,
∴为等腰梯形的对称轴,又// ,
∴、,①
在图中,∵,∴
由①及,得⊥平面,∴,
又,∴ 平面,
又平面,∴平面平面;
(2)在图中,由 , ,易得, ,
以为原点, 所在的直线为轴建立空间直角坐标系,如图所示,
则、、
得,
设是平面的一个法向量,
则,得,
取,得
同理可得平面的一个法向量
设所求锐二面角的平面角为,
则=
所以平面ADE与平面所成锐二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】设关于的一元二次方程.
(1)若是从0,1,2,3四个数中任取的一个数, 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若时从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数在区间上, , , , , , 均可为一个三角形的三边长,则称函数为“三角形函数”.已知函数在区间上是“三角形函数”,则实数的取值范围为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与抛物线共焦点,抛物线上的点M到y轴的距离等于,且椭圆与抛物线的交点Q满足.
(I)求抛物线的方程和椭圆的方程;
(II)过抛物线上的点作抛物线的切线交椭圆于、 两点,求此切线在x轴上的截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某举重运动队为了解队员的体重分布情况,从50名队员中抽取10名作调查.抽取时现将全体队员随机按1~50编号,并按编号顺序平均分成10组,每组抽一名,且各组内抽取的编号依次增加5进行系统抽样.
(1)若第5组抽出的号码为22,写出所有被抽取出来的编号;
(2)分别统计被抽取的10名队员的体重(单位:公斤),获得如图所示的体重数据的茎叶图,根据茎叶图求该样本的平均数和中位数;
(3)在题(2)的茎叶图中,从题中不轻于73公斤的队员中随机抽取2名队员的体重数据,求体重为81公斤的队员被抽到的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以, , , , , , 分组的频率分布直方图如图所示.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量在, , 的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线(为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为: .
(Ⅰ)求曲线的普通方程和直线的直角坐标方程;
(Ⅱ)过点且与直线平行的直线交于, 两点,求点到, 两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,顺次连接椭圆的四个顶点得到的四边形的面积为16.
(Ⅰ)求椭圆的方程;
(Ⅱ)过椭圆的顶点的直线交椭圆于另一点,交轴于点,若、、成等比数列,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为.
(Ⅰ)若为等边三角形,求椭圆的方程;
(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com