【题目】在直角坐标系中,二次函数的图象与轴交于, 两点,点的坐标为.当变化时,解答下列问题:
(1)以为直径的圆能否经过点?说明理由;
(2)过, , 三点的圆在轴上截得的弦长是否为定值?若是,则求出该定值;若不是,请说明理由.
【答案】(1)不经过点;(2)定值为.
【解析】试题分析:(1)在方程中,令可得点, 的坐标,验证AC的斜率与BC的斜率之积是否为-1即可;(2)设过A,B,C三点的圆的方程为,将点三点坐标代入方程,并结合,可得,进一步得,故圆的方程为,令y=0可解得,因此圆在y轴上截得的弦长是定值为4.。
试题解析:
(1)以为直径的圆不经过点C,理由如下:
设二次函数的图象与x轴交于A,B两点,设,
在方程中,令,得,
则是方程的两根,
∴
又C的坐标为(0,1),
故AC的斜率与BC的斜率之积为
所以直线AC,BC不垂直,
因此以为直径的圆不经过点C.
(2)设过A,B,C三点的圆的方程为,
∵点在圆上,
∴
,
由(1)
,
∴,
圆的方程为,
令,得
解得,
∴圆在y轴上截得的弦长是定值为4.
科目:高中数学 来源: 题型:
【题目】已知两条不重合的直线和两个不重合的平面,若,则下列四个命题:①若,则;②若,则; ③若,则;④若,则,其中正确命题的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=x2+(a+2)x﹣3,x∈[a,b]的图象关于直线x=1对称.
(1)求a、b的值和函数的零点
(2)当函数f(x)的定义域是[0,3]时,求函数f(x)的值域..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中, 底面,底面是直角梯形, , , , ,点在上,且.
(Ⅰ)已知点在上,且,求证:平面平面;
(Ⅱ)当二面角的余弦值为多少时,直线与平面所成的角为?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据国家环保部最新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米。某城市环保部分随机抽取的一居民区过去20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 | PM2.5平均浓度 | 频数 | 频率 |
第一组 | (0,25] | 3 | 0.15 |
第二组 | (25,50] | 12 | 0.6 |
第三组 | (50,75] | 3 | 0.15 |
第四组 | (75,100] | 2 | 0.1 |
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(II)求样本平均数,并根据样本估计总计的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时, (万元).当年产量不小于80千件时, (万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:在四棱锥中,底面是菱形, , 平面,点为的中点,且.
(1)证明: 面;
(2)求三棱锥的体积;
(3)在线段上是否存在一点,使得平面;若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com