精英家教网 > 高中数学 > 题目详情

【题目】设数列满足 (), .

(1)求证: 是等比数列,并求出数列的通项公式;

(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围;

(3)求证: .

【答案】(1) ;(2) ;(3) 见解析;

【解析】试题分析:(1)由可得,所以是首项为,公比为3的等比数列,进而可求得

(2)由题可转化为,即,对任意恒成立,再看成关于m的一次函数,需,解得

的取值范围为.

(3)由(1)知,利用当时, ,对进行放缩可得

.

试题解析:(1)解:由 ()得 ()

,∴,∴,()

是首项为3,公比为3的等比数列.

.

.

(2)要使对任意的正整数,当时,不等式恒成立,

则须使

,对任意恒成立,

,解得

∴实数的取值范围为.

(3)证明:由(1)知,当时,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段 后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如右表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为(

A.18万元 B.17万元 C.16万元 D.12万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,底面是梯形,

(1)求证:平面平面

(2)设为棱上一点, ,试确定的值使得二面角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义为的函数满足下列条件:对任意的实数都有:

时,

1

2求证:上为增函数;

3,关于的不等式对任意恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过椭圆上一点轴作垂线,垂足为左焦点分别为的右顶点,上顶点,且.

1)求椭圆的方程;

2上的两点,若四边形逆时针排列)的对角线所在直线的斜率为,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的两个极值点为,且

(1)求的值;

(2)若(其中)上是单调函数,求的取值范围;

(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P-ABCD,底面ABCD是边长为2的蓌形,PA平面ABCD,PA=2,ABC=60°,E,F分别是BC,PC的中点。

1)求证:AEPD;

2)求二面角E-AF-C的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】未知数的个数多余方程个数的方程(组)叫做不定方程,最早提出不定方程的是我国的《九章算术》.实际生活中有很多不定方程的例子,例如百鸡问题:公元五世纪末,我国古代数学家张丘建在《算经》中提出了百鸡问题鸡母一,值钱三;鸡翁一,值钱二;鸡雏二,值钱一.百钱买百鸡,问鸡翁、母、雏各几何?

算法设计:

(1)设母鸡、公鸡、小鸡数分别为则应满足如下条件

(2)先分析一下三个变量的可能值.的最小值可能为零若全部钱用来买母鸡最多只能买33只,

的值为中的整数的最小值为零最大值为50.的最小值为零最大值为100.

(3)对三个未知数来说取值范围最少为提高程序的效率先考虑对的值进行一一列举

(4)在固定一个的值的前提下再对值进行一一列举

(5)对于每个怎样去寻找满足百年买百鸡条件的.由于值已设定,便可由下式得到:

(6)这时的是一组可能解它只满足百鸡条件,还未满足百钱.是否真实解,还要看它们是否满足满足即为所求解

根据上述算法思想,画出流程图并用伪代码表示.

查看答案和解析>>

同步练习册答案