精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2+2|x-a|,当a>0时,若对?x∈[0,+∞),不等式f(x-1)≥2f(x)恒成立,求实数a的取值范围.
考点:二次函数的性质
专题:函数的性质及应用
分析:由题意可得,x∈[0,+∞)时,不等式x2+2x-1+2|x-(a+1)|-4|x-a|≥0恒成立 ①.再分(1)当0≤x≤a时、当(2)当x≥a+1、(3)当a<x<a+1时三种情况,分别求得a的范围,再取交集,即为所求.
解答: 解:由题意可得,x∈[0,+∞)时,不等式x2+2x-1+2|x-(a+1)|-4|x-a|≥0恒成立 ①.
(1)当0≤x≤a时,①即 x2+4x-2a+1≥0恒成立,由于当x=0时,不等式左边取得最小为-2a+1,
再由-2a+1≥0求得 a≤
1
2
,∴0<a≤
1
2

(2)当x≥a+1,①即x2+2a-3≥0 恒成立,由于当x=a+1时,不等式的左边取得最小值为a2+4a-2,
再由 a2+4a-2≥0求得a≥
6
-2.
(3)当a<x<a+1时,①即 x2-4x+6a+1≥0恒成立,该不等式对应的二次函数的图象开口向上,
对称轴为x=2,
若a>2,则当x=a时,不等式的左边取得最小值为a2+2a+1,由为a2+2a+1≥0,求得a∈R,
故此时有 a>2.
若a≤2≤a+1,则当x=2时,不等式的左边取得最小值为6a-3,由为6a-3≥0,求得a≥
1
2

故此时有1≤a≤2.
若a+1<2,则当x=a+1时,不等式左边取得最小值为a2+4a-2≥0,求得a≥
6
-2,
故此时有
6
-2<a<1.
故在此分类条件下,a≥-2+
6

综合(1)、(2)、(3),可得
6
-2≤a≤
1
2
,即a的范围为[
6
-2,
1
2
].
点评:本题主要考查二次函数的性质的应用,体现了分类讨论、转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

互相平行的三条直线,最多可以确定的平面个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左顶点A(-2,0),过右焦点F且垂直于长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线y=kx+m(k<0,m>b>0)与y轴交于点P,与x轴交于点Q,与椭圆C交于M,N两点,若
1
|PM|
+
1
|PN|
=
3
|PQ|
.求证:直线y=kx+m过定点,并求出这个定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=2sinθ,设直线L的参数方程是
x=-t+1
y=t
(t为参数).
(1)将曲线C的极坐标方程转化为直角坐标方程;
(2)设直线L与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx(cosx-sinx)+
2
,x∈R.
(1)求函数f(x)的最小正周期和单调增区间;
(2)求函数f(x)在区间[-
π
4
π
6
]上的最小值和最大值;
(3)若x∈(-π,
π
4
],求使f(x)≥
2
的x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+丨x-a丨,a为常数.设a>0,g(x)=
f(x)
x
,x∈(0,a]为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和Tn=(
1
3
)n
-a,数列{bn}(bn>0)的首项为b1=a,且其前n项和Sn满足Sn+Sn-1=1+2
SnSn-1
(n≥2,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{
1
bnbn+1
}
的前n项和为Pn

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax,
(Ⅰ)当a>0时,求函数f(x)在区间[1,e]内的最大值;
(Ⅱ)当a=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=
1-3n,n为偶数
2n-1,n为奇数
,则其前10项和为
 

查看答案和解析>>

同步练习册答案