精英家教网 > 高中数学 > 题目详情
若函数f(x)=则y=f(1-x)的图象可以是(    )

C

解析:f(1-x)=

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数f(x)=x+
4
x
,(x>0)在区间(0,2)上递减,则在
[2,+∞)
[2,+∞)
上递增;
(2)当x=
2
2
时,f(x)=x+
4
x
,(x>0)的最小值为
4
4

(3)试用定义证明f(x)=x+
4
x
,(x>0)在区间(0,2)上递减;
(4)函数f(x)=x+
4
x
,(x<0)有最值吗?是最大值还是最小值?此时x为何值?

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“梦想区间”.若函数f(x)=a-
1
x
(a>0)
存在“梦想区间”,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
x
1
4
1
2
1
3
2
2
8
3
4 8 16
 y 16.25 8.5 5
25
6
4
25
6
5 8.5 16.25
请观察表中y值随x值变化的特点,完成下列问题:
(1)若x1x2=4,则f(x1
=
=
f(x2)(请填写“>,=,<”号);若函数f(x)=x+
4
x
,(x>0)在区间(0,2)上递减,则在区间
(2,+∞)
(2,+∞)
上递增;
(2)当x=
2
2
时,f(x)=x+
4
x
,(x>0)的最小值为
4
4

(3)试用定义证明f(x)=x+
4
x
,在区间(0,2)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:
(1)f(x)在[m,n]上是单调的;
(2)当定义域是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“和谐区间”.
若函数f(x)=
a+1
a
-
1
x
(a>0)
存在“和谐区间”,则实数a的取值范围是
0<a<1
0<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区二模)定义:对函数y=f(x),对给定的正整数k,若在其定义域内存在实数x0,使得f(x0+k)=f(x0)+f(k),则称函数f(x)为“k性质函数”.
(1)判断函数f(x)=
1
x
是否为“k性质函数”?说明理由;
(2)若函数f(x)=lg
a
x2+1
为“2性质函数”,求实数a的取值范围;
(3)已知函数y=2x与y=-x的图象有公共点,求证:f(x)=2x+x2为“1性质函数”.

查看答案和解析>>

同步练习册答案