精英家教网 > 高中数学 > 题目详情
8.如图,A,B,C是⊙O上的三点,点D是劣弧$\widehat{BC}$的中点,过点B的切线交弦CD的延长线于点E.若∠BAC=80°,则∠BED=60°.

分析 由弦切角定理可得∠EBC=∠A,再由圆的圆周角定理,可得∠BCE=$\frac{1}{2}$∠A,在△BCE中,运用三角形的内角和定理,计算即可得到所求值.

解答 解:由BE为圆的切线,由弦切角定理可得
∠EBC=∠A=80°,
由D是劣弧$\widehat{BC}$的中点,可得∠BCE=$\frac{1}{2}$∠A=40°,
在△BCE中,∠BEC=180°-∠EBC-∠BCE
=180°-80°-40°=60°.
故答案为:60°.

点评 本题考查圆的弦切角定理和圆周角定理,以及三角形的内角和定理的运用,考查推理和运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知直线l经过点A(3,2)、B(3,-2),则直线l的斜率为(  )
A.0B.1C.-1D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设有如下三个命题:
甲;m∩l=A,m,l?α,m,l?β;
乙:直线m,1中至少有一条与平面β相交;
丙:平面α与平面β相交;
当甲成立时,乙是丙的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{1-x}{ax}$+lnx,若函数f(x)在[1,+∞)上为增函数,则正实数a的取值范围为(  )
A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,C,D是以AB为直径的半圆上两点,且$\widehat{AD}$=$\widehat{CD}$.
(1)若CD∥AB,证明:直线AC平分∠DAB;
(2)作DE⊥AB交AC于E,证明:CD2=AE•AC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f′(x)是函数f(x)(x∈R)的导函数,若f(x)-f(-x)=2x3,且当x>0时,f′(x)>3x2,则不等式f(x)-f(x-1)>3x2-3x+1的解集为(  )
A.(-∞,2)B.(${\frac{1}{2}$,+∞)C.(-∞,$\frac{1}{2}}$)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若两整数a、b除以同一个整数m,所得余数相同,即$\frac{a-b}{m}$=k(k∈Z),则称a、b对模m同余,用符号a≡b(mod m)表示,若a≡10(mod 6)(a>10),满足条件的a由小到大依次记为a1,a2…an,…,则数列{an}的前16项和为976.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)=ax2+bx+c.
(1)若f(x)>0的解集为{x|-3<x<4},解关于x的不等式bx2+2ax-(c+3b)<0.
(2)若对任意x∈R,不等式f(x)≥2ax+b恒成立,求${\;}_{\;}^{\;}\frac{b^2}{{{a^2}+{c^2}}}_{\;}^{\;}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分别为PD、PC、BC的中点.
(Ⅰ)求证:PA∥平面BDF;
(Ⅱ)求异面直线PB与EG所成角的余弦值.

查看答案和解析>>

同步练习册答案