精英家教网 > 高中数学 > 题目详情
18.设有如下三个命题:
甲;m∩l=A,m,l?α,m,l?β;
乙:直线m,1中至少有一条与平面β相交;
丙:平面α与平面β相交;
当甲成立时,乙是丙的充要条件.

分析 根据充分条件和必要条件的定义结合空间直线和平面,平面和平面相交的位置关系进行判断即可.

解答 解:当甲成立,即“相交直线l、m都在平面α内,并且都不在平面β内”时,若“l、m中至少有一条与平面β相交”,则“平面α与平面β相交”成立;
若“平面α与平面β相交”,则“l、m中至少有一条与平面β相交”也成立,
即当甲成立时,乙是丙的充要条件,
故答案为:充要.

点评 本题考查空间两条直线、两个平面的位置关系判断、充要条件的判断,考查逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)是定义在R上的偶函数,且最小正周期为2,若0≤x≤1时,f(x)=x,则f(-1)+f(-2017)=(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若正数x,y满足$\frac{1}{x}+\frac{1}{y}$=1,则$\frac{1}{x-1}+\frac{3}{y-1}$的最小值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某公司计划从五位大学毕业生甲、乙、丙、丁、戌中录用两人,若这五人被录用的机会均等,则甲或乙被录用的概率为$\frac{7}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.长方形ABCD的长和宽分别为AB=a,BC=b,且a<b,则绕AB=a旋转一周所得的几何体体积为V1,绕BC=b旋转一周所得的几何体体积为V2,则V1与V2的关系是(  )
A.V1=V2B.V1<V2C.V1>V2D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,已知曲线C1的参数方程是$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=\frac{\sqrt{3t}}{3}}\end{array}\right.$(t为参数),在以坐标原点O为极点,x轴的正半轴的极坐标系中,曲线C2的极坐标方程是ρ=2,求曲线C1与C2的交点在直角坐标系中的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,一个摩天轮的半径为18m,12分钟旋转一周,它的最低点P0离地面2m,
∠P0OP1=15°,摩天轮上的一个点P从P1开始按逆时针方向旋转,则点P离地
面距离y(m)与时间x(分钟)之间的函数关系式是(  )
A.$y=-18cos\frac{π}{12}(x+1)+20$B.$y=-18cos\frac{π}{12}(x-1)+20$
C.$y=-18cos\frac{π}{6}(x+\frac{1}{2})+20$D.$y=-18cos\frac{π}{6}(x-\frac{1}{2})+20$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,A,B,C是⊙O上的三点,点D是劣弧$\widehat{BC}$的中点,过点B的切线交弦CD的延长线于点E.若∠BAC=80°,则∠BED=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,D为BC中点,直线AB上的点M满足:3$\overrightarrow{AM}$=2λ$\overrightarrow{AD}$+(3-3λ)$\overrightarrow{AC}$(λ∈R),则$\frac{|AM|}{|MB|}$=1.

查看答案和解析>>

同步练习册答案