分析 设$\overrightarrow{AM}$=x$\overrightarrow{AB}$,由题意可知$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),代入已知条件,整理得(3x-λ)$\overrightarrow{AB}$=(3-2λ)$\overrightarrow{AC}$,根据向量的基本定理可知只有当3x-λ=3-2λ=0时等式成立,即可求得x的值,求得$\frac{|AM|}{|MB|}$的值.
解答
解:设$\overrightarrow{AM}$=x$\overrightarrow{AB}$,
∵D为BC中点
∴$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
3$\overrightarrow{AM}$=2λ$\overrightarrow{AD}$+(3-3λ)$\overrightarrow{AC}$,
可以化为3x$\overrightarrow{AB}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$)+(3-3λ)$\overrightarrow{AC}$,
化简为(3x-λ)$\overrightarrow{AB}$=(3-2λ)$\overrightarrow{AC}$,
∵只有当3x-λ=3-2λ=0时,(3x-λ)$\overrightarrow{AB}$=(3-2λ)$\overrightarrow{AC}$才成立
∴λ=$\frac{3}{2}$,x=$\frac{1}{2}$,
∴$\overrightarrow{AM}$=$\frac{1}{2}$$\overrightarrow{AB}$,即M为AB中点
$\frac{|AM|}{|MB|}$=1,
故答案为:1.
点评 本题考查向量的基本定理基本定理及其意义,考查向量加法的三角形法则,考查数形结合思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 6.5 | C. | 13 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n-1 | B. | 1-2n | C. | 2-($\frac{1}{2}$)n-1 | D. | ($\frac{1}{2}$)n-2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com