精英家教网 > 高中数学 > 题目详情
14.定义在R上的偶函数f(x)满足:f(4)=f(-2)=0,在区间(-∞,-3)与[-3,0]上分别递增和递减,则不等式xf(x)>0的解集为(-∞,-4)∪(-2,0)∪(2,4).

分析 由题意可得函数的图象关于y轴对称,且f(4)=f(2)=f(-2)=f(-4),画出f(x)的单调性示意图,由不等式xf(x)>0,可得$\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$①或 $\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$②.,分别求得①②的解集,再取并集,即得所求.

解答 解:∵定义在R上的偶函数f(x)满足:f(4)=f(-2)=0,
可得函数的图象关于y轴对称,
且f(4)=f(2)=f(-2)=f(-4),
在区间(-∞,-3)与[-3,0]上分别递增和递减,画出f(x)的单调性示意图,如图:
则由不等式xf(x)>0,可得$\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$①或 $\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$②.
解①求得2<x<4,解②求得x<-4 或-2<x<0.
综上可得,不等式的解集为:(-∞,-4)∪(-2,0)∪(2,4),
故答案为:(-∞,-4)∪(-2,0)∪(2,4).

点评 本题主要考查函数的单调性、奇偶性以及函数的零点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,已知曲线C1的参数方程是$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=\frac{\sqrt{3t}}{3}}\end{array}\right.$(t为参数),在以坐标原点O为极点,x轴的正半轴的极坐标系中,曲线C2的极坐标方程是ρ=2,求曲线C1与C2的交点在直角坐标系中的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知偶函数f(x)是定义在{x∈R|x≠0}上的可导函数,其导函数为f′(x),当x<0时,f′(x)>$\frac{f(x)}{x}$恒成立,设m>1,记a=$\frac{4m•f(m+1)}{m+1}$,b=2$\sqrt{m}$•f(2$\sqrt{m}$),c=(m+1)•f($\frac{4m}{m+1}$),则a,b,c的大小关系为(  )
A.a<b<cB.a>b>cC.b<a<cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a,b是函数f(x)=x2-mx+n(m>0,n>0)的两个不同的零点,且a,b,-4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则m+n=26.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,D为BC中点,直线AB上的点M满足:3$\overrightarrow{AM}$=2λ$\overrightarrow{AD}$+(3-3λ)$\overrightarrow{AC}$(λ∈R),则$\frac{|AM|}{|MB|}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知|$\overrightarrow a}$|=|${\overrightarrow b}$|=|${\overrightarrow c}$|=1,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.不等式组$\left\{\begin{array}{l}{x+y-2≥0}\\{x+2y-4≤0}\\{x+3y-2≥0}\end{array}\right.$表示的平面区域的面积为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2-2x,g(x)=mx+2,?x1∈[-2,2],?x2∈[-2,2],使得g(x1)=f(x2),则m的取值范围是[-$\frac{3}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l与双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1交于A、B两点,现取AB的中点M在第一象限,并且在抛物线y2=4x上,M到抛物线焦点的距离为2,则直线l的斜率为(  )
A.1B.2C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案