精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x2-2x,g(x)=mx+2,?x1∈[-2,2],?x2∈[-2,2],使得g(x1)=f(x2),则m的取值范围是[-$\frac{3}{2}$,$\frac{3}{2}$].

分析 根据题意,求出f(x1)的范围[-1,8],要使g(x1)=f(x2),只需g(x)的范围在f(x)内即可.

解答 接:∵f(x)=x2-2x,
∵x1∈[-2,2],
∵f(x1)∈[-1,8]
又∵?x1∈[-2,2],?x2∈[-2,2],使g(x1)=f(x2),
若m>0,则g(-2)≥-1,g(2)≤8
解得m≤$\frac{3}{2}$
即0<m≤$\frac{3}{2}$
若m=0,则g(x)=2恒成立,满足条件;
若m<0,则g(-2)≤8,g(2)≥-1
解得m≥-$\frac{3}{2}$
即-$\frac{3}{2}$≤m<0;
综上满足条件的m的取值范围是-$\frac{3}{2}$≤m≤$\frac{3}{2}$.
故m的取值范围是[-$\frac{3}{2}$,$\frac{3}{2}$]
故答案为:[-$\frac{3}{2}$,$\frac{3}{2}$]

点评 考查了对任意和存在的理解和对一次函数m 的分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设函数f′(x)是函数f(x)(x∈R)的导函数,若f(x)-f(-x)=2x3,且当x>0时,f′(x)>3x2,则不等式f(x)-f(x-1)>3x2-3x+1的解集为(  )
A.(-∞,2)B.(${\frac{1}{2}$,+∞)C.(-∞,$\frac{1}{2}}$)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在R上的偶函数f(x)满足:f(4)=f(-2)=0,在区间(-∞,-3)与[-3,0]上分别递增和递减,则不等式xf(x)>0的解集为(-∞,-4)∪(-2,0)∪(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,a,b,c分别为角A,B,C的对边,若asinAsinB+bcos2A=$\sqrt{3}$a,则$\frac{b}{a}$=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$2\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分别为PD、PC、BC的中点.
(Ⅰ)求证:PA∥平面BDF;
(Ⅱ)求异面直线PB与EG所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.把12个相同的球全部放入编号为1、2、3的三个盒内,要求盒内的球数不小于盒号数,则不同的放入方法种数为(  )
A.21B.28C.40D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:方程x2+2x+m=0没有实数根,命题q:方程$\frac{x^2}{m+1}+\frac{y^2}{m-2}$=1表示双曲线,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC中,BC=6,AC=8,cosC=$\frac{75}{96}$,则△ABC的形状是(  )
A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公差不为0等差数列{an}满足:a1,a2,a7成等比数列,a3=9.
(1)求{an}的通项公式;
(2)若数列{an}的前n项和Sn,求数列{$\frac{{S}_{n}}{n}$}的前n项和Tn

查看答案和解析>>

同步练习册答案