精英家教网 > 高中数学 > 题目详情
6.不等式组$\left\{\begin{array}{l}{x+y-2≥0}\\{x+2y-4≤0}\\{x+3y-2≥0}\end{array}\right.$表示的平面区域的面积为(  )
A.2B.4C.6D.8

分析 画出约束条件的可行域,求出顶点坐标,然后求解可行域的面积.

解答 解:画出不等式组表示的平面区域如下:
$\left\{\begin{array}{l}{x+y-2=0}\\{x+2y-4=0}\end{array}\right.$,可得A(0,2),
由$\left\{\begin{array}{l}{x+y-2=0}\\{x+3y-2=0}\end{array}\right.$,解得B(2,0),
由$\left\{\begin{array}{l}{x+2y-4=0}\\{x+3y-2=0}\end{array}\right.$可得C(8,-2).
直线x+2y-4=0过(2,0).
可行域的面积为:$\frac{1}{2}×2×(2+2)$=4.
故选:B.

点评 本题考查线性规划的简单应用,考查数形结合思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{1-x}{ax}$+lnx,若函数f(x)在[1,+∞)上为增函数,则正实数a的取值范围为(  )
A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)=ax2+bx+c.
(1)若f(x)>0的解集为{x|-3<x<4},解关于x的不等式bx2+2ax-(c+3b)<0.
(2)若对任意x∈R,不等式f(x)≥2ax+b恒成立,求${\;}_{\;}^{\;}\frac{b^2}{{{a^2}+{c^2}}}_{\;}^{\;}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在R上的偶函数f(x)满足:f(4)=f(-2)=0,在区间(-∞,-3)与[-3,0]上分别递增和递减,则不等式xf(x)>0的解集为(-∞,-4)∪(-2,0)∪(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知样本数据x1,x2,…,x5的平均数为5,y1,y2,…,y10的平均数为8,则把两组数据合并成一组以后,这组样本数据的平均数为(  )
A.6B.6.5C.13D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,a,b,c分别为角A,B,C的对边,若asinAsinB+bcos2A=$\sqrt{3}$a,则$\frac{b}{a}$=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$2\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分别为PD、PC、BC的中点.
(Ⅰ)求证:PA∥平面BDF;
(Ⅱ)求异面直线PB与EG所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:方程x2+2x+m=0没有实数根,命题q:方程$\frac{x^2}{m+1}+\frac{y^2}{m-2}$=1表示双曲线,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}的前n项和为Sn,且Sn-an=n2-n,n∈N+
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\left\{\begin{array}{l}{\frac{1}{\sqrt{n-1}+\sqrt{n+1}}(n=2k-1)}\\{\frac{1}{{a}_{\frac{n}{2}}{a}_{\frac{n}{2}+1}}(n=2k)}\end{array}\right.$(k∈N+),数列{bn}的前n项和为Tn,求T2016

查看答案和解析>>

同步练习册答案