精英家教网 > 高中数学 > 题目详情
4.已知直线l与双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1交于A、B两点,现取AB的中点M在第一象限,并且在抛物线y2=4x上,M到抛物线焦点的距离为2,则直线l的斜率为(  )
A.1B.2C.$\frac{3}{2}$D.$\frac{5}{2}$

分析 根据点与抛物线的关系求出中点M的坐标,设A(x1,y1),B(x2,y2),代入双曲线的方程,运用点差法,结合中点坐标公式和直线的斜率公式.

解答 解:由已知设M(a,b),
抛物线y2=4x的焦点坐标为(1,0),准线方程为x=-1
∵M到抛物线焦点(1,0)的距离为2,
∴a+1=2,即a=1,此时b2=4,则b=2,即M(1,2).
设A(x1,y1),B(x2,y2),
可得$\frac{{{x}_{1}}^{2}}{4}$-$\frac{{{y}_{1}}^{2}}{12}$=1,$\frac{{{x}_{2}}^{2}}{4}$-$\frac{{{y}_{2}}^{2}}{12}$=1,
两式相减可得,$\frac{1}{4}$(x1-x2)(x1+x2)-$\frac{1}{12}$(y1-y2)(y1+y2)=0,
M为AB的中点,即有x1+x2=2,y1+y2=4,
可得直线AB的斜率为k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{12({x}_{1}+{x}_{2})}{4({y}_{1}+{y}_{2})}$=$\frac{12×2}{4×4}$=$\frac{3}{2}$.
故选:C

点评 本题考查双曲线的中点弦所在直线方程的求法,注意运用点差法,注意检验直线的方程的存在性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.定义在R上的偶函数f(x)满足:f(4)=f(-2)=0,在区间(-∞,-3)与[-3,0]上分别递增和递减,则不等式xf(x)>0的解集为(-∞,-4)∪(-2,0)∪(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:方程x2+2x+m=0没有实数根,命题q:方程$\frac{x^2}{m+1}+\frac{y^2}{m-2}$=1表示双曲线,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC中,BC=6,AC=8,cosC=$\frac{75}{96}$,则△ABC的形状是(  )
A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(an,1),$\overrightarrow{b}$=(an+1,2),且a1=1.若数列{an}的前n项的和为Sn,且$\overrightarrow{a}$∥$\overrightarrow{b}$,则Sn=(  )
A.2n-1B.1-2nC.2-($\frac{1}{2}$)n-1D.($\frac{1}{2}$)n-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}的前n项和为Sn,若an=$\frac{1}{n(n+1)}$,则S4=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}的前n项和为Sn,且Sn-an=n2-n,n∈N+
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\left\{\begin{array}{l}{\frac{1}{\sqrt{n-1}+\sqrt{n+1}}(n=2k-1)}\\{\frac{1}{{a}_{\frac{n}{2}}{a}_{\frac{n}{2}+1}}(n=2k)}\end{array}\right.$(k∈N+),数列{bn}的前n项和为Tn,求T2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公差不为0等差数列{an}满足:a1,a2,a7成等比数列,a3=9.
(1)求{an}的通项公式;
(2)若数列{an}的前n项和Sn,求数列{$\frac{{S}_{n}}{n}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知sin($\frac{3π}{2}$-α)=$\frac{1}{3}$,则cos2α=-$\frac{7}{9}$.

查看答案和解析>>

同步练习册答案