精英家教网 > 高中数学 > 题目详情
16.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小正周期为$\frac{2π}{3}$,最小值为-2,图象过($\frac{5π}{9}$,0),求该函数的解析式并求其单调区间.

分析 根据已知,求出函数的各个参数值,进而可得函数的解析式,结合正弦函数的图象和性质,可得函数的单调区间.

解答 解:∵函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小正周期为$\frac{2π}{3}$,最小值为-2,
∴ω=3,A=2,
∴函数y=2sin(3x+φ)(|φ|<$\frac{π}{2}$)的图象过($\frac{5π}{9}$,0),
∴sin($\frac{5π}{3}$+φ)=0,φ=$\frac{π}{3}$+kπ,k∈Z,
∴φ=$\frac{π}{3}$,
故y=2sin(3x+$\frac{π}{3}$),
由-$\frac{π}{2}$+2kπ≤3x+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z得:
x∈[-$\frac{5π}{18}$+$\frac{2}{3}kπ$,$\frac{π}{18}$+$\frac{2}{3}kπ$],k∈Z
由$\frac{π}{2}$+2kπ≤3x+$\frac{π}{3}$≤$\frac{3π}{2}$+2kπ,k∈Z得:
x∈[$\frac{π}{18}$+$\frac{2}{3}kπ$,$\frac{7π}{18}$+$\frac{2}{3}kπ$],k∈Z
故函数的单调递增区间为:[-$\frac{5π}{18}$+$\frac{2}{3}kπ$,$\frac{π}{18}$+$\frac{2}{3}kπ$],k∈Z
单调递减区间为:[$\frac{π}{18}$+$\frac{2}{3}kπ$,$\frac{7π}{18}$+$\frac{2}{3}kπ$],k∈Z

点评 本题考查的知识点是三角函数的图象和性质,根据已知,求出函数的解析式,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c,\overrightarrow d$及实数x,y满足$|{\overrightarrow a}|=|{\overrightarrow b}|=1,\overrightarrow c=\overrightarrow a+({{x^2}-3})\overrightarrow b$,$\overrightarrow d=-y\overrightarrow a+x\overrightarrow b,\overrightarrow a⊥\vec b,\vec c⊥\vec d$,且$|{\vec c}|≤\sqrt{10}$.
(1)将y表示成x的函数y=f(x)并求定义域;
(2)$x∈({1,\sqrt{6}})$时,不等式f(x)≥mx-16恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线C的方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其左、右焦点分别是F1、F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0 ) (x0>0,y0>0)满足$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{M{F}_{1}}}{P{F}_{1}}$=$\frac{{\overrightarrow{{F_2F}_1}•\overrightarrow{{MF}_1}}}{{{F_2F}_1}}$,则S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=x-\sqrt{1-2x}$(  )
A.有最小值$\frac{1}{2}$,无最大值B.有最大值$\frac{1}{2}$,无最小值
C.有最小值$\frac{1}{2}$,有最大值2D.无最大值,也无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设l为直线,α,β是两个不同的平面,下列命题中正确的是(  )
A.若l∥α,l∥β,则 α∥βB.若 l⊥α,l⊥β,则 α∥β
C.若l⊥α,l∥β,则 α∥βD.若 α⊥β,l∥α,则 l⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出下列四个命题:
①集合{x||x|<0}为空集是必然事件;
②y=f(x)是奇函数,则f(0)=0是随机事件;
③若loga(x-1)>0,则x>1是必然事件;
④对顶角不相等是不可能事件.
其中正确命题是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设Sn是等比数列{an}的前n项和,满足S3,S2,S4成等差数列,已知a1+2a3+a4=4.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn},满足bn=$\frac{1}{{{{log}_2}|{a_n}|}}$,n∈N*,记Tn=b1b2+b2b3+b3b4+…+bnbn+1,n∈N*,若对于任意n∈N*,都有aTn<n+4恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若实数a,b满足a+b=2,则2a+2b的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{2}$=1的一个焦点为(2,0),则椭圆的离心率是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步练习册答案