精英家教网 > 高中数学 > 题目详情
6.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{2}$=1的一个焦点为(2,0),则椭圆的离心率是$\frac{\sqrt{6}}{3}$.

分析 利用椭圆的焦点坐标,求出a,然后求解椭圆的离心率即可.

解答 解:椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{2}$=1的一个焦点为(2,0),
可得a2-2=4,所以a2=6.e=$\frac{c}{a}$=$\frac{2}{\sqrt{6}}$=$\frac{\sqrt{6}}{3}$.
故答案为:$\frac{{\sqrt{6}}}{3}$.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小正周期为$\frac{2π}{3}$,最小值为-2,图象过($\frac{5π}{9}$,0),求该函数的解析式并求其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=$\frac{x^2}{{1+{x^2}}}$,则f($\frac{1}{2016}$)+f($\frac{1}{2015}$)+…+f(1)+f(2)+…+f(2016)=(  )
A.4031B.$\frac{4031}{2}$C.4032D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{2\sqrt{5}}{5}$,直线x+2y+2=0与椭圆交于P,Q两点,且以PQ为直径的圆过M(2,0),求这个椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x2-ax+1)ex(其中e为自然对数的底数).
(1)设f(x)=xlnx-x2+$\frac{f(x)}{e^x}$,若a<$\frac{3}{2}$,求f(x)在区间[1,e]上的最大值;
(2)定义:若函数G(x)在区间[s,t](s<t)上的取值范围为[s,t],则称区间[s,t]为函数G(x)的“域同区间”,若a=2,求函数f (x)在(1,+∞)上所有符合条件的“域同区间”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在一个圆心为O,半径为R半圆形钢板上截取一块矩形材料,怎样截取能使这个矩形的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与直线y=-2的两个相邻公共点之间的距离等于π.
(1)求f(x)的单调递增区间;
(2)若x∈[${\frac{π}{6}$,$\frac{π}{2}}$],求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)满足f(n+1)=$\frac{3f(n)+n}{3}$(n∈N*),且f(1)=1,则f(18)=(  )
A.20B.38C.52D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数a,b满足ln(b+1)+a-3b=0,实数c,d满足2d-c+$\sqrt{5}$=0,则(a-c)2+(b-d)2的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案