精英家教网 > 高中数学 > 题目详情
10.已知α∈($\frac{π}{2}$,π),cosα=-$\frac{3}{5}$,则 tanα=-$\frac{4}{3}$;tan(α+$\frac{π}{4}$)-$\frac{1}{7}$.

分析 利用同角三角函数的基本关系求得tanα,再利用两角差的正切公式求得tan(α+$\frac{π}{4}$)的值.

解答 解:∵α∈($\frac{π}{2}$,π),cosα=-$\frac{3}{5}$,∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{4}{5}$,
则 tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,tan(α+$\frac{π}{4}$)═$\frac{tanα+1}{1-tanα}$=-$\frac{1}{7}$,
故答案为:$-\frac{4}{3}$;$-\frac{1}{7}$.

点评 本题主要考查同角三角函数的基本关系,两角差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.先观察不等式(a${\;}_{1}^{2}$+a${\;}_{2}^{2}$)(b${\;}_{1}^{2}$+b${\;}_{2}^{2}$)≥(a1b1+a2b22(a1、a2、b1、b2∈R)的证明过程:设平面向量$\overrightarrow{α}$=(a1,b1),$\overrightarrow{β}$=(a2,b2),则|$\overrightarrow{α}$|=$\sqrt{{a}_{1}^{2}+{b}_{1}^{2}}$,|$\overrightarrow{β}$|=$\sqrt{{a}_{2}^{2}+{b}_{2}^{2}}$,$\overrightarrow{α}$•$\overrightarrow{β}$=a1a2+b1b2
∵|$\overrightarrow{α}$•$\overrightarrow{β}$|≤|$\overrightarrow{α}$|•|$\overrightarrow{β}$|,
∴|a1a2+b1b2|≤$\sqrt{{a}_{1}^{2}{+b}_{1}^{2}}$•$\sqrt{{a}_{2}^{2}+{b}_{2}^{2}}$,
∴(a1a2+b1b22≤(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$),
再类比证明:(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$)≥(a1a2+b1b2+c1c22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-(-1)k2alnx(k∈N,a∈R且a>0).
(1)求f(x)的极值;
(2)若k=2016,关x的方程f(x)=2ax有唯一解,求a的值.
(3)k=2015时,证明:对一切x>0都有f(x)-x2>2a($\frac{1}{{e}^{x}}$-$\frac{2}{ex}$)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义在R上的可导函数,且f(-x)=-f(x)恒成立,若f′(-x0)=k≠0则f′(x0)=(  )
A.kB.-kC.$\frac{1}{k}$D.-$\frac{1}{k}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-x3+x2+bx+c,当x=$\frac{2}{3}$时,函数f(x)有极大值$\frac{4}{27}$.
(Ⅰ)求实数b、c的值;
(Ⅱ)若存在x0∈[-1,2],使得f(x0)≥3a-7成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A(-1,2)为抛物线C:y=2x2上的点,直线l1过点A,且与抛物线C相切.直线l2:x=a(a>-1)交抛物线C于点B,交直线l1于点D.设设由抛物线C、直线l1、l2所围成的图形的面积为S1
(1)求直线l1的方程;
(2)求S1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知偶函数f(x),当 x∈[0,2)时,f(x)=sinx,当 x∈[2,+∞)时,f(x)=log2x,则f(-$\frac{π}{3}$)+f(4)=(  )
A.$-\sqrt{3}+2$B.1C.3D.$\frac{\sqrt{3}}{2}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.化简$\frac{{cos({2π-α})tan({π-α})}}{{sin({π+α})}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知A={x|x-5<2x-4<5-x},B={x|x2-3x≤0,x∈R},C={x|2x2+mx-1<0,x∈R},若对任意x∈A∩B都有x∈C,求实数m的取值范围.

查看答案和解析>>

同步练习册答案