精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=-x3+x2+bx+c,当x=$\frac{2}{3}$时,函数f(x)有极大值$\frac{4}{27}$.
(Ⅰ)求实数b、c的值;
(Ⅱ)若存在x0∈[-1,2],使得f(x0)≥3a-7成立,求实数a的取值范围.

分析 (Ⅰ)f′(x)=-3x2+2x+b,利用当x=$\frac{2}{3}$时,函数f(x)有极大值$\frac{4}{27}$,建立方程,即可求得实数b、c的值;
(Ⅱ)存在x0∈[-1,2],使得f(x0)≥3a-7成立,等价于x∈[-1,2],使得f(x)max≥3a-7成立,求出函数的最大值,即可求实数a的取值范围.

解答 解:(Ⅰ)f′(x)=-3x2+2x+b,
∵当x=$\frac{2}{3}$时,函数f(x)有极大值$\frac{4}{27}$,
∴f′($\frac{2}{3}$)=-$\frac{4}{3}$+$\frac{4}{3}$+b=0,f($\frac{2}{3}$)=-$\frac{8}{27}$+$\frac{4}{9}$+c=$\frac{4}{27}$,
∴b=0,c=0;
(Ⅱ)存在x0∈[-1,2],使得f(x0)≥3a-7成立,
等价于x∈[-1,2],使得f(x)max≥3a-7成立,
由(Ⅰ)知,f(x)=-x3+x2,f′(x)=-3x(x-$\frac{2}{3}$),
函数在[-1,0)上单调递减,在(0,$\frac{2}{3}$)上单调递增,在($\frac{2}{3}$,2]上单调递减,
∵f(-1)=2,f($\frac{2}{3}$)=$\frac{4}{27}$,
∴f(x)max=f(-1)=2,
∴2≥3a-7,解得:a≤3.

点评 本题考查导数知识的运用,考查函数的绝对值,考查函数的最值,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在[a-1,2a]上的偶函数,且当x>0时,f(x)单调递增,则关于x的不等式f(x-1)>f(a)的解集为[$\frac{1}{3}$,$\frac{2}{3}$)∪($\frac{4}{3}$,$\frac{5}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边为a,b,c,设S为△ABC的面积,满足S=$\frac{{\sqrt{3}}}{4}({a^2}+{c^2}-{b^2})$
(1)求角B的大小
(2)求sinA+sinC的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.现有2位男生和3位女生共5位同学站成一排.(用数字作答)
(1)若2位男生相邻且3位女生相邻,则共有多少种不同的排法?
(2)若男女相间,则共有多少种不同的排法?
(3)若男生甲不站两端,女生乙不站最中间,则共有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ($\sqrt{3}$cosθ-sinθ)=3$\sqrt{3}$,圆C的极坐标方程为ρ=2$\sqrt{3}$sinθ.
(1)求直线l和圆C的直角坐标方程;
(2)P为直线l上一动点,当点P到圆心C的距离最小时,求点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知α∈($\frac{π}{2}$,π),cosα=-$\frac{3}{5}$,则 tanα=-$\frac{4}{3}$;tan(α+$\frac{π}{4}$)-$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.满足cosαcosβ=$\frac{\sqrt{3}}{2}$-sinαsinβ的一组α,β的值是(  )
A.α=$\frac{13}{12}$π,β=$\frac{3π}{4}$B.α=$\frac{π}{2}$,β=$\frac{π}{6}$C.α=$\frac{π}{2}$,β=$\frac{π}{3}$D.α=$\frac{π}{3}$,β=$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是一几何体的直观图、正视图和俯视图.下列选项图中,按照画三视图的要求画出的该几何体的侧视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.5名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为(  )
A.10B.20C.32D.25

查看答案和解析>>

同步练习册答案