精英家教网 > 高中数学 > 题目详情
17.满足cosαcosβ=$\frac{\sqrt{3}}{2}$-sinαsinβ的一组α,β的值是(  )
A.α=$\frac{13}{12}$π,β=$\frac{3π}{4}$B.α=$\frac{π}{2}$,β=$\frac{π}{6}$C.α=$\frac{π}{2}$,β=$\frac{π}{3}$D.α=$\frac{π}{3}$,β=$\frac{π}{4}$

分析 先将已知条件转化成cosαcosβ+sinαsinβ=cos(α-β)=$\frac{\sqrt{3}}{2}$,再根据题中选项进行逐一验证,可得答案.

解答 解:由已知得,cosαcosβ+sinαsinβ=$\frac{\sqrt{3}}{2}$,
∴cos(α-β)=$\frac{\sqrt{3}}{2}$,代入检验得α=$\frac{π}{2}$,β=$\frac{π}{3}$.
故选:C.

点评 本题主要考查两角和与差的余弦公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.函数y=x3-3x在[-1,2]上的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若c=acosB,b=asinC,则△ABC是(  )
A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-x3+x2+bx+c,当x=$\frac{2}{3}$时,函数f(x)有极大值$\frac{4}{27}$.
(Ⅰ)求实数b、c的值;
(Ⅱ)若存在x0∈[-1,2],使得f(x0)≥3a-7成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在菱形ABCD中,∠DAB=60°,E是AB的中点,MA⊥平面ABCD,且在矩形ADNM中,AD=2,AM=3.
(1)求证:AC⊥BN;
(2)求证:AN∥平面MEC;
(3)求二面角M-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知偶函数f(x),当 x∈[0,2)时,f(x)=sinx,当 x∈[2,+∞)时,f(x)=log2x,则f(-$\frac{π}{3}$)+f(4)=(  )
A.$-\sqrt{3}+2$B.1C.3D.$\frac{\sqrt{3}}{2}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若(2+i)×(1-i)=a+bi,a,b∈R,则a+b=(  )
A.-2B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设A=[-1,1],B=[-2,2],函数f(x)=2x2+mx-1,
(1)设不等式f(x)≤0的解集为C,当C⊆(A∩B)时,求实数m的取值范围;
(2)若对任意x∈R,都有f(1-x)=f(1+x)成立,试求x∈B时,函数f(x)的值域;
(3)设g(x)=2|x-a|-x2-mx(a∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)当PD=2AB,且E为PB的中点,求二面角B-AE-C的余弦值.

查看答案和解析>>

同步练习册答案