分析 (1)根据三角形的面积公式题中所给条件可得S=$\frac{{\sqrt{3}}}{4}({a^2}+{c^2}-{b^2})$=$\frac{1}{2}$acsinB,可求出tanB的值,再由三角形内角的范围可求出角B的值.
(2)根据三角形内角和为π将角A,C转化为同一个角表示,然后根据两角和的正弦定理,正弦函数的图象和性质可得答案.
解答 解:(1)由题意可知$\frac{1}{2}$acsinB=$\frac{{\sqrt{3}}}{4}({a^2}+{c^2}-{b^2})$=$\frac{\sqrt{3}}{4}$×2accosB.
所以tanB=$\sqrt{3}$.
因为0<B<π,
所以B=$\frac{π}{3}$;
(2)由已知sinA+sinC
=sinA+sin(π-B-A)
=sinA+sin($\frac{2π}{3}$-A)
=sinA+$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA=$\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA=$\sqrt{3}$sin(A+$\frac{π}{6}$).
∵A∈(0,$\frac{2π}{3}$),可得:A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(A+$\frac{π}{6}$)∈($\frac{1}{2}$,1],
∴sinA+sinC=$\sqrt{3}$sin(A+$\frac{π}{6}$)∈($\frac{\sqrt{3}}{2}$,$\sqrt{3}$].
点评 本题主要考查余弦定理、三角形面积公式、三角变换等基础知识,同时考查三角运算求解能力,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4] | B. | $[-2\sqrt{13},2\sqrt{13}]$ | C. | [4,+∞) | D. | (-∞,2$\sqrt{13}$]∪[2$\sqrt{13}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com